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ABSTRACT

The two main streams in finding cluster structure from data could be to identify the number

of natural clusters and, of course, to group the objects in a reasonable way. In order to achieve

good results for these two, measuring goodness of clustering is required prior to beginning any

related studies because it helps to establish a definition of cluster that could be ambiguous by

individuals having different opinions on it. In this research we are concerned about the com-

pactness and the connectivity of cluster as our goodness measurements. The former has been

regarded as one of the most important properties that should be accomplished in a clustering

task, whereas the latter that we think as a significant factor has received less attention. Since

we believe that both are individually important, we employ them for better estimating the

number of clusters and clustering objects. A new estimating method produces a set of promis-

ing estimates by measuring compactness and connectivity from clustered datasets which look

similar to the original data but have an amount of perturbation, and then determines a single

optimal number by majority voting scheme. The connectivity measure newly introduced in

our research is also used as an objective to be achieved in clustering objects. We propose a

new clustering algorithm, named as CNCLUST, that works in a way to optimize the quantity

of connectivity. The proposed clustering algorithm is a greedy heuristic that looks like a single

linkage method, but it is distinguishable by the fact that it first considers local compactness of

objects and later incorporates it into global connectivity. We conducted numerical experiments

in order to evaluate the performances of the proposed methods based on simulated datasets

and a real data. The results seem optimistic.
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CHAPTER 1. INTRODUCTION

1.1 Clustering and Its Applications

In the last decades, a variety methods for data mining, also called as machine learning or

pattern recognition, have been developed and successfully applied to various fields, such as

bioinformatics, computer vision, power system, information retrieval, fraud detection, finan-

cial prediction, and etc (Chan et al., 1999; Haussler, 1999; Brown et al., 2000; Forsyth and

Ponce, 2003; Moulin et al., 2004; Lee et al., 2005). Generally, the scenarios of data mining

are divided into two main streams which are classification (with a discrete type of response

variables) including prediction (with a continuous type of response variables) and clustering.

Clustering is distinguished from classification by the fact that there is no a priori output, and

that is why it is called unsupervised learning while classification is called supervised learning.

Therefore, clustering algorithms are expected to produce partitions that reflect the internal

structure of the data and identify natural groups. Because of such a nature of clustering, it is

acknowledged that data clustering is a challenging task and an ill-posed problem when prior

information about the underlying data distributions is not well defined. Nevertheless, it has

been successfully applied, as an exploratory pattern analysis, to many different applications

including image segmentation, constructing prototypes of classifiers, understanding genomic

data, market segmentation, and etc (Jain et al., 1999). Some of those applications will be

briefly mentioned in the rest of this section.

One of the practical motivations of image segmentation is to make special effects in making

films. This thus means that the image segmentation is used to locate objects and boundaries

(lines, curves, etc.) in images, so, for example, we can remove the current background of

an image and apply another new background in order to artificially give a designated special
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effect on the image. Again, image segmentation is the process of assigning a label to every

single pixel in an image such that pixels with the same label share certain common visual

properties (Shapiro and Stockman, 2001). This process of assigning labels is therefore defined

as a clustering problem, and various approaches to this problem have been developed in its

literature (Pham et al., 2000; Liew and Yan, 2005; Levin et al., 2008).

Market segmentation that enables us to plan a specific promotion or target at a certain mar-

ket is another major application of clustering, since segmentation means grouping customers

with similar needs and responses (Punj and Stewart, 1983). In general, people make a survey

to collect customer responses and apply an appropriate clustering method based on datasets

observed on some demographic variables, psychographic variables, behavioral variables, and

etc., in order to group customers. Some previously unknown but interesting knowledge can be

found from this analysis and such findings are then used to more accurately meet the needs of

selected customers in a more profitable way (May et al., 2001).

Spatial data clustering shows several applications of cluster analysis to criminal detection,

traffic incidence detection, defects classification in manufacturing systems, and etc. (Nath,

2006; Sheu, 2002; Lee et al., 2005). In this field of applications, clustering typically constructs

prototypes of classifiers to discriminate a new object such as incidence or defect into one of

conducted classes. Since the objects in the initial learning stage are generally unlabeled, a

clustering method can be applied to the dataset to generate specific types of patterns.

In this research, the application of clustering under our consideration is about foodborne

disease outbreaks. In most states, the diagnosed cases of certain serious infections are re-

ported to health department that also reports to Center for Disease Control and Prevention

(CDC) through the National Outbreak Reporting System (NORS). Since foodborne outbreak

investigations made in a timely manner can lead us to rapid identification of corresponding

etiologies and thus to taking an appropriate action for prevention and control of diseases, it is

necessary to come up with a methodology for identification of patterns of outbreaks. However,

it has not been yet investigated through cluster analysis; nonetheless cluster analysis has been

successfully applied to many other fields as mentioned above. With this application-oriented
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motivation we, therefore, apply our clustering method to the dataset from CDC in Chapter 5.

1.2 Why Cluster Analysis

In this section we briefly mention the answer to the question in the section title with regard

to data visualization. Let us take a look at Figure 3.1 containing two examples of clusters.

It is clear to notice that the first example has three clusters and the second one has two

clusters, because they are observed in two-dimensional space. We also recognize which object

should belong to which cluster without any difficulties. This means that if the dataset we are

investigating lies on up to three dimensions, we then notice its cluster structure by visualizing

the dataset and we do not have to use any clustering algorithms or cluster validation methods.

However, almost all data we obtain from real world domains is typically much more high-

dimensional.

Due to some difficulties of high-dimensional data visualization, people have made a tremen-

dous amount of efforts on developing better visualization methods. Scatter plot matrix is one

of the most often used and good visualization methods for a dataset observed in a high-

dimensional space. Given a set of variables, the scatter plot matrix contains all the pair-wise

scatter plots of the variables on a single page in a matrix format. Figure 1.1a shows an example.

The dataset in this example was generated as follows. 50 objects were generated from standard

multivariate normal distribution with the center of µ1 = (0, 0, 0, 0, 0). Another 50 objects were

then generated again from the same distribution but with a different center, µ2 = (1, 0, 0, 0, 0),

meaning that we moved the center of the density along with the first axis. We repeated this

procedure for µ3 = (0, 1, 0, 0, 0), µ4 = (0, 0, 1, 0, 0), µ5 = (0, 0, 0, 1, 0), and µ6 = (0, 0, 0, 0, 1).

Hence, this dataset has clearly six clusters in five dimensions. However, its scatter plot matrix

failed to reveal the true cluster structure as shown in the figure. The figure actually misleads us

to three clusters rather than six clusters. However, more sophisticated visualization methods

may overcome the visualization difficulty of this dataset, and Figure 1.1b shows a good exam-

ple. We used the 2D tour provided in GGobi software (http://www.ggobi.org/) to visualize

the same dataset. The idea behind this 2D tour is that we may be able to see interesting
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two-dimensional projections of high dimensional data if we look a sequence of projections long

enough. As can be seen in Figure 1.1b it clearly shows the structure of six clusters.

(a) Scatter plot matrix (b) 2D tour plot

Figure 1.1: Two different visualizations of a same dataset

Nevertheless, there still exist limitations of visualizing high-dimensional datasets. For ex-

ample, a dataset observed in a high-dimensional and discrete space may be very difficult to

be shown graphically with its full representation of variation or distribution. Moreover, we

cannot entirely rely on the visualization methods to discover the structure of clusters in data.

Clustering has here its own reason for existing and that is why people have been working on

developing cluster algorithms, improving its performance, and validating the resulting clusters.

1.3 Research Initiative

A myriad number of clustering algorithms have been proposed during the last half of decade.

Some have their origins in graph theory, whereas the others are based on statistical pattern

recognition, optimization and more. Comparing the relative benefits of various clustering

methods is quite difficult to be made due to the fact that when applied to the same dataset,

different clustering algorithms often lead to remarkably different clustering results. In some

cases such differences are expected, since different algorithms make different assumptions about

the structure of the data. An ideal one may be able to group objects so that most of human
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eyes or opinions can agree on the result as a ‘good’ clustering, but it may be very difficult to

come up with such a beautiful method.

Although some of clustering methods generate some special partitions, it has been observed

that a majority of existing methods tends to cluster objects so that they form a cluster in which

the objects are spherically distributed. In the optimization point of view, this phenomenon

is caused by their objective that pursues the compactness as a goodness of clustering. For

instance, the objective of the k-means clustering, which is one of the most famous clustering

algorithms, is to minimize the sum of squared distances between the centroid in a cluster and

the other objects in the same cluster. A similar objective can be found in many other clustering

studies.

Based on the objective pursuing the compactness, people have also validated a clustering

result in order to decide whether the result is good or not. For estimating the number of natural

clusters, many estimating methods have looked for the point where it is meaningless to increase

the number of clusters by having improved compactness. In other words, people deicide the

optimal number of clusters when the improvement of compactness is not significant although

we increase the number of clusters. It is done by seeking for an elbow point on the plot of the

compactness against the number of clusters. As for this compactness measure, people have

used the same computation with the objective in clustering, which is the within-cluster sum

of squares.

However, there may be another goodness measure to evaluate a clustering result. Our

research motivation comes from this initiative. Since we believe that a good clustering result

should preserve the close relationships among objects such that the close objects are clustered

together, two intuitive concepts called as ‘cluster k-NN consistency’ and ‘cluster k-MN consis-

tency’ are first considered to provide a new goodness measurement which is the connectivity.

We believe that these concepts are simple but powerful to conduct a good clustering paradigm.

We propose this goodness measure for a better cluster analysis, including cluster validation

and clustering algorithm itself, which hopefully can handle any arbitrarily shaped datasets.

Hence, a new clustering method and estimating method will be studied in this research.
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This research article has the following structure. We introduce a basic foundation of cluster

analysis in the following chapter. It includes both clustering methods and cluster validation.

The criteria, compactness and connectivity, that we pursue in this research are mentioned in

Chapter 3. Based on those objectives, a new estimating method and a heuristic approach for

data clustering will be proposed in Chapter 4 and Chapter 5 respectively. We conclude and

suggest our future studies in Chapter 6.
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CHAPTER 2. REVIEW OF LITERATURE

This chapter provides a basic understanding of both cluster analysis and cluster validation

through a review of related literatures. The first section briefly introduces several well-known

clustering methods categorized by their characteristics, and we will then take a look at how to

validate the resulting cluster solutions and how to determine the optimal number of clusters

in the proceeding section. At the end of each section, some claimable issues which are our

research motivation will be stated.

2.1 Cluster Analysis

Cluster analysis, which is broadly called ‘unsupervised classification’ in the machine learn-

ing society due to the absence of data labels, is a technique used for combining objects into

several groups or clusters such that each group is homogeneous. Suppose that there are n

objects in a space and let Oi be the ith object. A set S which consists of the n objects can be

expressed as below.

S = {O1, O2, . . . , On} (2.1)

Cluster analysis can be described as a task that partitions the set S into mutually exclusive g

subsets C1, C2, . . . , Cg such that

Ci ∩ Cj = ∅, 1 ≤ i 6= j ≤ g (2.2)

and
g⋃
i=1

Ci = S. (2.3)
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In the above expression, Cj is the jth resulting cluster. An aggregation of Cj (j = 1, 2, . . . , g)

is called a clustering result or a clustering solution and it can be stated as following.

P = {C1, C2, . . . , Cg} (2.4)

A great number of clustering methods have been proposed for the last half-century. Al-

though there may be antoher reason to categorize the clustering methods in a different way,

conventional literatures classify the huge majority of algorithms into two types, hierarchical

methods and non-hierarchical (partitioning) methods (Kaufman and Rousseeuw, 1990).

Hierarchical methods, which do not build a single partition with g clusters but deal with all

values of g in a single run, are also subdivided into two kinds of techniques: the agglomerative

methods and the divisive methods. Whereas the former begins with n clusters meaning that

each object makes one cluster, which are united step by step until we get one single cluster, the

latter starts when all objects are together and in each following step a cluster is split up, until

there are n objects. Hence, their constructions of data hierarchy have the opposite direction.

It is important to note that the number of clusters g is predefined in non-hierarchical

methods. The procedure sets g number of representative objects or values and each object

is then assigned to one of those in a sense that this assignment maximizes the intra-cluster

similarity and minimizes the inter-cluster similarity. We typically repeat this procedure by re-

positioning new representatives and assigning objects again at each step, until the clustering

solution converges.

As we might have noticed, now the task is to quantitatively measure the ‘similarity’ or the

‘homogeneity’. In the cluster analysis, the dissimilarity measure rather than similarity measure

is generally used. One of the most well-known dissimilarity measures is the distance measure.

Assume that one object has p attributes or variables and let xij (i = 1, 2, . . . , n; j = 1, 2, . . . , p)

denote the jth variate of the ith object. In other words, the data matrix X = (xij) consists

of p features measured on n independent observations. The ith object, therefore, has the

coordinate xi = (xi1, xi2, . . . , xip)>. The Euclidean distance between the ith and jth object is
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given by

d(Oi, Oj) = d(xi, xj) =

√√√√ p∑
a=1

(xia − xja)2 =
√

(xi − xj)>(xi − xj), (2.5)

and its generalized version, which is called Minkowski distance, is defined as below.

d(xi, xj) =

( p∑
a=1

| xia − xja |m
) 1

m

(2.6)

The case of m = 2 is equivalent to the Euclidean distance as shown above, and the Manhattan

distance can be defined by setting m = 1. Since the most general selection of d(xi, xj) is the

squared Euclidean distance in the clustering literature, we also adopt it and the ‘distance’ thus

refers to the squared Euclidean distance from hence in this research.

2.1.1 Hierarchical Methods

Although the hierarchical methods consist of the agglomerative and the divisive as men-

tioned above, we only focus on understanding the former in this section because of its broad

use in many application areas.

The linkage methods which construct a hierarchical cluster tree in an agglomerative man-

ner are based on various measurements of proximity between two groups of objects. In order

to explain each of linkage methods we need the following notation.

Ci: ith cluster

| Ci |: number of objects in the ith cluster

d(u, v): distance measure between the uth object and the vth object

D(Ci, Cj): distance measure between the ith cluster and the jth cluster

1. Single linkage uses the smallest distance between objects in the two clusters.

D(Ci, Cj) = min
u∈Ci,v∈Cj

d(u, v) (2.7)

2. Complete linkage uses the largest distance between objects in the two clusters.

D(Ci, Cj) = max
u∈Ci,v∈Cj

d(u, v) (2.8)



www.manaraa.com

10

3. Average linkage uses the average distance between all pairs of objects in cluster Ci and

cluster Cj .

D(Ci, Cj) =
1

| Ci || Cj |
∑

u∈Ci,v∈Cj

d(u, v) (2.9)

4. Centroid linkage uses the distance between the centroids of the two clusters

D(Ci, Cj) = d(ci, cj) (2.10)

where

ci = (x̄(i)
1 , x̄

(i)
2 , . . . , x̄(i)

p ), (2.11)

x̄(i)
a =

1
| Ci |

∑
j∈Ci

xja, a = 1, . . . , p. (2.12)

5. Ward linkage uses the incremental sum of squares; that is, the increase in the total

within-cluster sum of squares as a result of joining clusters Ci and Cj . It is given by

D(Ci, Cj) =
| Ci || Cj | d(ci, cj)2

| Ci | + | Cj |
. (2.13)

The within-cluster sum of squares of a cluster is defined as the sum of squares of the

distance between all objects in the cluster and the centroid of the cluster.

The five linkage methods mentioned above use different measurements of proximity be-

tween two groups of objects, but follow the same algorithm in order to create a hierarchical

cluster tree, as described below.
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Linkage Clustering Algorithm

Step 0. (1) Start by assigning each object into a cluster, so that if you have n

objects, you now have n clusters.

(2) g ← n.

Step 1. (1) Compute the distance D(Ci, Cj), 1 ≤ i 6= j ≤ g for all pairs of current

resulting clusters.

(2) Find the closest pair of clusters and merge them into a single cluster,

so that you now have one cluster less.

(3) g ← g − 1.

Step 2. (1) If g = 1 then stop. Otherwise repeat Step 1.

2.1.2 Non-hierarchical Methods

Non-hierarchical method, which is also called partitioning method, predefines the number of

clusters g and then assigns each object into an appropriate one of clusters so that the resulting

clusters are non-overlapped each other. As indicated in the previous studies (Vinod, 1969;

Olafsson et al., 2008), the non-hierarchical clustering can be given as an integer programming

formulation by defining the binary decision variable,

aij =


1, if the ith object is assigned to the jth cluster

0, otherwise
. (2.14)

Let cij be some cost of assigning the ith object into the jth cluster then the optimization

problem which objective is to minimize the total cost of the assignment can be formulated as

below.

min Z =
n∑
i=1

g∑
j=1

cijaij

subject to
g∑
j=1

aij = 1, i = 1, 2, . . . , n

n∑
i=1

aij ≥ 1, j = 1, 2, . . . , g

(2.15)

In this optimization problem the first set of constraints is to build the non-overlapping clusters

by assigning one object into exactly one cluster, and the second one is to prevent an empty
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cluster meaning that each cluster should have at least one object. Since the cij in the objective

function is usually not a constant but a function of aij , this problem, in general, cannot be

solved directly. We therefore employ some heuristic-like algorithms in order to find the optimal

solution. In this section we briefly mention the two of the most famous partitioning algorithms,

k-means method and PAM method that is a k-medoids clustering.

k-means clustering

For the identical usage of the notation, the descriptions of k-means clustering use ‘g’ instead

of ‘k’ which is mostly used in the k-means literatures, to indicate the number of clusters. Given

the input parameter g, k-means clustering works with g centroids. Once the g centroids are

determined, the corresponding g clusters are routinely structured by assigning each object to

the closest centroid, vice versa, once the g clusters are formed, g new centroids are calculated

by taking the mean value of objects for each cluster. This process iterates until its convergence.

Hence, this method can be interpreted as finding g centroids denoted by cj , j = 1, 2, . . . , g,

and the below optimization problem can be formulated in order to achieve the goal.

min Z =
n∑
i=1

g∑
j=1

d(xi, cj)aij

subject to cj =

n∑
i=1

xiaij

n∑
i=1

aij

, j = 1, 2, . . . , g

g∑
j=1

aij = 1, i = 1, 2, . . . , n

n∑
i=1

aij ≥ 1, j = 1, 2, . . . , g

(2.16)

In order to obtain the optimal solution to the above problem, the following algorithm is widely

used, because, again, the problem is a nonlinear integer programming that is thus very difficult

to obtain an optimal solution directly.
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k-means Clustering Algorithm

Step 0. (Initialization) Set initial g centroids to random values or arbitrarily

chosen g objects in the given data.

Step 1. (Assignment) (Re)assign each object to the cluster which has the closest

centroid to the object.

Step 2. (Update) Update the cluster centroids, i.e., calculate the mean value of

the objects for each cluster.

Step 3. (Convergence check) If the updated centroids are equal to the centroids

in the previous iteration then stop. Otherwise, repeat Step 1 – Step 2.

k-medoids clustering

One drawback of k-means clustering is that it is quite sensitive to outliers, and k-medoids

clustering is sometimes used for this reason. Since it uses the most centrally located object

(medoid) instead of a mean valued object (centroid) in a cluster, it is less sensitive to outliers

than the k-means method.

A medoid is an object in a cluster that has the smallest average or total distance to other

objects in the cluster, that is, if we let x(i)
m denote the medoid of the cluster Ci, then

∑
j∈Ci

d(x(i)
m , x

(i)
j ) = min

k∈Ci

∑
j∈Ci

d(x(i)
k , x

(i)
j )

 . (2.17)

By defining an additional decision variable

bi =


1, if the ith object is a medoid

0, otherwise
, (2.18)

k-medoids clustering problem is also given by the following optimization formulation (Vinod,
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1969; Kaufman and Rousseeuw, 1990).

min Z =
n∑
i=1

n∑
j=1

d(xi, xj)aij

subject to
n∑
i=1

aij = 1, j = 1, 2, . . . , n

aij ≤ bi, i, j = 1, 2, . . . , n
n∑
i=1

bi = g

(2.19)

PAM (Partitioning Around Medoids) is one of the early-introduced k-medoids algorithms.

This method consists of two parts which are ‘Build’ and ‘Swap’. The first one selects the

initial representative objects carefully, and the other one repeatedly tries to make a better

choice of cluster representatives. This procedure analyzes all possible pairs of objects where

one object in each pair is regarded as a representative object (medoid) and the other is not.

The description of detailed PAM algorithm is shown in Kaufman and Rousseeuw (1990).

2.1.3 Other Methods

Apart from the classical clustering methods mentioned above, many other approaches have

been developed in solving the clustering problem.

A model-based clustering technique using Expectation and Maximization (EM) algorithm

is one of the most often used methods (Banfield and Raftery, 1993; Celeux and Govaert, 1995;

Fraley and Raftery, 2002). Since this method computes probabilities of cluster memberships

based on one or more probability distributions rather than cluster labels, it is called a ‘soft’

clustering. The EM algorithm begins with initial parameters of g Gaussian mixtures and

calculates the likelihood that each object is drawn from a particular density function. The

algorithm then updates the parameters in order to maximize the likelihood of the given dataset.

This procedure repeats iteratively. Therefore, this method can be said a probabilistic variant of

k-means method. Let µj and Σj be the mean and the covariance of the jth Gaussian density

function which will be corresponding to the jth cluster. The probability density function

evaluated at xi is the sum of all densities:

P (xi) =
g∑
j=1

pjfj(xi | µj ,Σj) (2.20)
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where the a priori probability pj is the fraction of the objects in cluster j such that
∑
pj = 1,

and

fj(xi | µj ,Σj) =
1

(2π | Σj |)
1
2

exp
{
−1

2
(xi − µj)>Σ−1

j (xi − µj)
}
. (2.21)

By defining the binary variable aij shown in Equation 2.14, the resulting log-likelihood is

L =
n∑
i=1

logP (xi) =
n∑
i=1

g∑
j=1

aij log
(
pjfj(xi | µj ,Σj)

)
. (2.22)

The E step in EM algorithm for mixture models is given from Bayes’ theorem by

âij =
p̂jfj(xi | µ̂j , Σ̂j)∑g
j=1 p̂jfj(xi | µ̂j , Σ̂j)

, (2.23)

while the M step involves maximizing Equation 2.22 in terms of pj , µj , and Σj with aij fixed

at the values calculated in Equation 2.23. Therefore, the resulting estimates have simple

closed-form expressions involving the given data and âij as below:

µ̂j =
∑n
i=1 âijxi∑n
i=1 âij

, Σ̂j =
∑n
i=1 âij(xi − µ̂j)(xi − µ̂j)>∑n

i=1 âij
, p̂j =

1
n

n∑
i=1

âij . (2.24)

Computation of the covariance estimate Σ̂j in fact depends on its parameterization. Details of

parameterization by eigenvalue decomposition are shown in Celeux and Govaert (1995).

Due to good performance as a stochastic search procedure, some evolutionary techniques

have recently been proposed for cluster representation. Especially, Genetic Algorithm (GA) has

been broadly employed in data clustering literatures (Murthy and Chowdhury, 1996; Maulik

and Bandyopadhyay, 2000; Garai and Chaudhuri, 2004). Although many different types of

string (or chromosome) representation are allowed in order to define cluster memberships,

most of GA-based clustering methods have focused on defining g number of cluster centroids,

because once g cluster centroids has been decided, the next step, which is the cluster labeling,

is a straight-forward step. It could be a binary representation or a sequence of real num-

bers standing for coordinates of centroids in p-dimensional space. Once a chromosome type

is defined, the general GA-based clustering algorithms intrinsically follow the canonical GA

procedures and use basic operators of GA. However, it has been found that the GA-based

methods could be inefficient if we fail to make a compromise between two conflicting facets;

the maintenance of population diversity and the optimality guarantee with fewer changes in
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the bits of the present best strings as the GA goes nearer to the optimum. It may be diffi-

cult to satisfy those, since we usually cannot reflect the structure of clustering problem into

the GA procedures after encoding the original solution to the chromosome representation. In

order to overcome such difficulties, a recently developed heuristic optimization method called

the Nested Partitions method (Shi and Olafsson, 2008) was employed to solve an optimization

problem formulated for clustering in the one recent research (Kim et al., 2009). One advan-

tage of this method is that we can reflect the special structure of clustering problem into the

method unlike the GA. Computational time can therefore be reduced especially for large-scale

clustering problems. Details are described in Kim et al. (2009).

2.1.4 Objectives of Clustering

As mentioned earlier, the final goal of clustering is to group objects in which the resulting

clusters satisfy as much homogeneity within each cluster as well as much separation between

the clusters as possible. As for the homogeneity within a cluster, the majority of existing

approaches introduced in this chapter adopts the objective of compactness in terms of variation

between data objects in the same cluster. For instance, k-means clustering tried to minimize

the sum of squared distances between a cluster mean and the other objects in the same cluster,

while k-medoids clustering uses a discrete type of cluster representatives, i.e. medoids, instead

of cluster centers to minimize the sum of squared distances in a cluster. Average or complete

linkage agglomerative approach is a heuristic algorithm that implicitly tries to achieve a similar

objective. Since the model-based clustering attempts to fit the best mixture of Gaussian at

a fixed number of components and the Gaussian distribution basically assumes the convex-

shaped dispersion of data objects, this approach does also pursue a very similar objective. An

example having a quite different criterion, namely one-nearest-neighbor-based connectivity, is

the single linkage agglomerative algorithm. This approach does consider a more local concept

of clustering in its procedure.

Having said that different clustering objectives can lead more than one structure of clusters,

we, in this research, would like to introduce a new clustering criterion that is basically based
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on a concept of connectivity, which has been received less awareness than the compactness for

which the majority of existing approaches strives, and to suggest a new clustering approach to

optimize the proposed objective. This objective is similar to what the single linkage method

tries to accomplish but different in the respect that it has a more global concept of cluster-

ing than the single linkage. Details for this criterion and its implementation as a clustering

algorithm will be described in Chapter 3 and Chapter 5 respectively.

2.2 Cluster Validation

The term ‘cluster validation’ usually refers to the ability of a given method to recover the

true clustering structure in a dataset. Once we obtain a clustering solution stated by Equation

2.4, we should be able to assess quantitatively if the clustering algorithm recover the true

cluster labels, since the clustering results are not completely reliable in the most of situations.

In many validation studies, clustering methods are evaluated on their performance on empirical

datasets with or without a priori known cluster labels. In the ‘with’ case, cluster validity can

be investigated by external indices, while internal indices have been used for the latter case

where we do not have the true cluster labels.

2.2.1 External Indices

In order to assess the ability of a clustering method for recovering true cluster labels, it is

necessary to define a measure of agreement between two partitions; the first partition being

the a priori known cluster structure of the data, and the second partition resulting from the

cluster procedure. In the clustering literature the measurements of agreement between two

different partitions have been referred to as the external indices. In this section we will briefly

review several well-known indices.

Consider two partitions P 1 and P 2 of n objects: U -group partition P 1 = {C1
1 , . . . , C

1
U} and

V -group partition P 2 = {C2
1 , . . . , C

2
V }. External indices of agreement between two partitions

can be expressed in terms of a confusion matrix as shown in Table 2.1. The cell statistic

nuv denotes the number of objects that belong to both clusters C1
u and C2

v , u = 1, . . . , U ,



www.manaraa.com

18

v = 1, . . . , V . Let

nu· =
V∑
v=1

nuv and n·v =
U∑
u=1

nuv (2.25)

denote the row and column sum of the confusion matrix respectively.

Table 2.1: Confusion matrix for two partitions of n objects

C2
1 C2

2 · · · C2
V total

C1
1 n11 n12 · · · n1V n1·

C1
2 n21 n22 · · · n2V n2·

...
...

...
...

...
C1
U nU1 nU2 · · · nUV nU ·

total n·1 n·2 · · · n·V n

Rand Index (Rand, 1971) is simply a matching coefficient. If we newly define four simpler

statistics in order to express agreement between two resulting cluster solutions as below:

a: number of pairs of objects in the same cluster in both P 1 and P 2

b: number of pairs of objects in the same cluster in P 1 but not in the same cluster in P 2

c: number of pairs of objects in the same cluster in P 2 but not in the same cluster in P 1

d: number of pairs of objects in different clusters in both P 1 and P 2

the Rand Index is then given by

RI(P 1, P 2) =
a+ d

a+ b+ c+ d
. (2.26)

The Rand Index lies between 0 and 1, and the perfect agreement of two partitions is indicated

by ‘1’ of RI. Equation 2.26 is equivalent to the following equation expressed by the cell

statistics in Table 2.1.

RI(P 1, P 2) =

1 +

[
U∑
u=1

V∑
v=1

n2
uv −

1
2

(
U∑
u=1

n2
u· +

V∑
v=1

n2
·v

)]
n

2

 (2.27)

A problem with the Rand Index is that the expected value of the Rand Index of two random

partitions does not take the value of zero. The Adjusted Rand Index proposed by Hubert and

Arabie (1985) follows the form of adjustment in Equation 2.28 so that it could be bounded
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above by ‘1’ and take the value of ‘0’ when the observed index equals to the expected index.

observed index− expected index
maximum index− expected index

(2.28)

The numerator of Equation 2.28 represents the observed improvement over chance and the

denominator says the maximum possible improvement over chance. The maximum index is

always unity. By following the form in Equation 2.28, the Adjusted Rand Index is given by

ARI(P 1, P 2) =

U∑
u=1

V∑
v=1

nuv
2

− [ U∑
u=1

nu·
2

 V∑
v=1

n·v
2

]/
n

2


1
2

[
U∑
u=1

nu·
2

+
V∑
v=1

n·v
2

]− [ U∑
u=1

nu·
2

 V∑
v=1

n·v
2

]/
n

2

 (2.29)

Jaccard’s coefficient (Jain and Dubes, 1988) also shows a similarity between two partitions

as the Rand Index does, but does not take account into ‘conjoint absence’ as shown in Equation

2.30. Hence, this coefficient measures the portion of pairs in the same cluster in both P 1 and

P 2 from those in the same cluster either in P 1 or P 2. Another expression in terms of nuv

is also given in Equation 2.30. For more information about relationship between {a, b, c, d}

statistics and nuv statistics, see Collins and Dent (1988).

JC(P 1, P 2) =
a

a+ b+ c
=

U∑
u=1

V∑
v=1

n2
uv − n

U∑
u=1

n2
u· +

V∑
v=1

n2
·v −

U∑
u=1

V∑
v=1

n2
uv − n

(2.30)

As in the Rand Index, the value of this coefficient lies between ‘0’ and ‘1’. If the value is close

to ‘1’, high agreement between two partitions appears.

The Fowlkes and Mallows Index (Fowlkes and Mallows, 1983) is a geometric mean of two

measurements; the probability that a pair of objects in the same cluster in P 1 belong to the

same cluster in P 2, and the probability that a pair of objects in the same cluster in P 2 belong

to the same cluster in P 1. This measure basically comes from the Wallace Index (Wallace,

1983). Since the Wallace Index for two partitions is asymmetric, the Fowlkes and Mallows
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Index takes the geometric mean of the asymmetric Wallace Indices as shown in Equation 2.31.

FM(P 1, P 2) =
(

a

a+ b
· a

a+ c

) 1
2

=

U∑
u=1

V∑
v=1

n2
uv − n

2

 U∑
u=1

nu·
2

 V∑
v=1

n·v
2

 1
2

(2.31)

This index also lies between ‘0’ and ‘1’ and a higher value means a higher agreement between

two partitions.

It is important to note that the significance of an observed external index is usually assessed

under assumption that the two partitions P 1 and P 2 to be compared are independent. Let one

of the two partitions be the true cluster labels and the other partition be the resulting cluster

solution. Based on the above indices we can quantitatively measure the degree of successfulness

of the employed clustering method for recovering the true clustering structure in a dataset.

2.2.2 Internal Indices

While the assessment of a resulting cluster solution using external indices is straightforward

because we have a clear external criterion that is a priori known cluster labels, the valida-

tion of resulting cluster structures without true cluster labels is a more difficult task. Let us

recall the definition of cluster analysis or clustering. Because of several different definitions

of cluster by researchers’ different point of views, a number of definitions of cluster analysis

have been observed in the literature. One point of view regards clustering as the segmentation

of a heterogeneous group into a number of more homogeneous sub-groups such that the re-

sulting sub-groups maximize intra-cluster similarity and minimize inter-cluster similarity. The

majority of existing researches attempt to look for the clustering structure where summary

statistics of interest are optimal, and these statistics are typically the within-cluster sum of

squares trWg where

Wg =
g∑
j=1

∑
i∈Cj

(xi − cj) (xi − cj)> , (2.32)

and the between-cluster sum of squares trBg where Bg is given as below:

Bg =
g∑
j=1

|Cj | (cj − c) (cj − c)> , c =
1
n

n∑
i=1

xi, (2.33)
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for the representation of intra-cluster similarity and inter-cluster similarity respectively. A

function of those statistics is usually referred to as an internal index that is to estimate the

number of clusters in a dataset. Estimation of the correct number of clusters is regarded

as one challenging problem in cluster analysis. A myriad number of approaches has been

proposed for estimating the optimal number of clusters g∗ and they may fall into one of the

following categories that are summary-statistic-based methods, resampling methods, density-

based methods, and the other methods. The two main streams in this line of research are the

first two categories.

One earliest method was proposed by Calinski and Harabasz (1974). Let us denote CH(g)

the index computed by their method. It decides the optimal number of clusters by

g∗ = argmax
g≥2

[
CH(g) =

trBg/(g − 1)
trWg/(n− g)

]
. (2.34)

Because it searches for the maximum ratio between inter-cluster similarity and intra-cluster

similarity, it is also called Variance Ratio Criterion (VRC).

Hartigan (1975) looked for the greatest improvement on intra-cluster similarity when one

more number of clusters is allowed, and suggested the following index.

g∗ = argmin
g≥1

[
Hart(g) =

(
trWg

trWg+1
− 1

)
/(n− g − 1)

]
(2.35)

Instead of comparing the intra-cluster similarity at g number of clusters to that at g + 1

number of clusters, Krzanowski and Lai (1985) considered three consecutive values of within-

cluster sum of squares at g − 1, g, and g + 1. They believed that if the difference between the

current within-cluster sum of squares and the previous within-cluster sum of squares are big

enough when compared to the difference between the current value and the next value, more

partitioning is meaningless and the optimal number of clusters may have to be decided at this

point. The equation is defined as below:

g∗ = argmax
g≥2

[
KL(g) =

∣∣∣∣ DIFF (g)
DIFF (g + 1)

∣∣∣∣] , (2.36)

where

DIFF (g) = (g − 1)
2
p trWg−1 − g

2
p trWg. (2.37)
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The Average Silhouette Width proposed with the clustering method PAM (Kaufman and

Rousseeuw, 1990) is also built on the comparison of the inter-cluster similarity with the intra-

cluster similarity, although a bit different metrics are used. For the ith object, let a(i) be the

average distance to other objects in its cluster and b(i) be the smallest d(i, C) where d(i, C)

is the average distance to all objects in any other cluster C. The silhouette width of the ith

object is given by

Sil(i) =
b(i)− a(i)

max{a(i), b(i)}
, (2.38)

and the overall average silhouette width is simply the mean value of Sil(i). Intuitively, objects

with large silhouette width values are well-clustered, whereas those with small Sil(i) values

are likely to lie between clusters. Kaufman and Rousseeuw suggested an estimated number of

clusters g∗ by observing the largest average silhouette width as shown in Equation 2.39.

g∗ = argmax
g≥2

[
Sil(g) =

1
n

n∑
i=1

Sil(i)

]
(2.39)

One recent approach for estimating number of clusters called ‘Gap statistic’ was proposed

by Tibshirani et al. (2001). This method compares an observed internal index, such as the

within-cluster sum of squares, to its expectation under a reference null distribution. Its pro-

cedure is as follows. For each number of clusters g ≥ 1, compute the within-cluster sum of

squares trWg. Generate B number of reference datasets under the null distribution (They

generated each reference feature uniformly in Tibshirani et al.) and apply the clustering algo-

rithm to each reference dataset for calculating a set of within-cluster sum of squares that are

trW1
g, trW

2
g, . . . , trW

B
g . Based on the computed set of sum of squares we calculate the Gap

statistic

Gap(g) =
1
B

B∑
b=1

log trWb
g − log trWg (2.40)

and the standard deviation SD(g) of log trWb
g, b = 1, 2, . . . , B, that is

SD(g) =

 1
B

B∑
b=1

(
log trWb

g −
(

1
B

B∑
b=1

log trWb
g

))2


1
2

(2.41)

Let S(g) = SD(g)
√

1 + 1/B. The estimated number of clusters via Gap statistic is chosen by

g∗ = smallest g such that Gap(g) ≥ Gap(g + 1)− S(g). (2.42)
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We are be able to say that the above five methods belong to the summary-statistic-based

approaches, since they first compute one statistic or more which summarizes the given clus-

tering result and then decide the number of clusters by observing its trend at varying number

of clusters.

Clest, a prediction-based resampling method was proposed by Dudoit and Fridlyand (2002).

In order to estimate the number of clusters in a dataset this method repeatedly and randomly

divide the original data set into two non-overlapping sets, a learning set and a test set. At each

iteration and each number of clusters g, a clustering solution of the learning set is obtained and

a prediction model is built using the cluster labels from the clustering. The prediction model

is then applied to the test set and the predicted labels are compared to those produced by

applying the clustering procedure to the test set, using one of the external indices mentioned in

the previous section. The number of clusters is estimated by comparing the observed similarity

statistic for each g to its expected value under a suitable null distribution. In their research they

also used the uniform distribution. In order to have the expected similarity the procedure that

generates the agreement statistic between two sets of cluster labels from both the clustering

method and the prediction model is repeated B times. In the respect of obtaining an expected

value of a statistic, this method can be said to take the framework of Gap statistic method,

but the main difference is that an external index for obtaining consistency is used. The entire

Clest procedure is shown in Dudoit and Fridlyand (2002).

Ben-Hur et al. (2002) proposed another resampling-based estimating method (BH ). This

method also exploits measurements of stability of clustering solutions obtained by perturbing

the given data set, and the stability is characterized by the distribution of pair-wise similarities

between clustering solutions obtained from two sub-samples of the data. The pair-wise simi-

larities are also acquired from one of the external indices. For each number of clusters g two

sub-samples are generated from the given data set at a given sampling rate, and an identical

clustering method is then applied to both sub-samples in order to obtain two partitions. Mea-

suring the degree of agreement between two partitions using a suitable external criterion gives

us a clue in estimating the number of clusters. The intuition behind this approach is that,
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at the optimal number of clusters, many sub-samples have similar clustering results and the

distribution of similarities will be concentrated close to 1. One common thing between BH and

Clest is that they use external indices to measure consistency of clustering solutions. Clest,

however, generates predicted class labels from a classification model for its external criterion,

whereas BH compares cluster labels from resampled datasets.

Kernel Density Estimation, which is a non-parametric density estimation method, has been

used for determining the number of clusters (Nakamura and Kehtarnavaz, 1998; Herbin et al.,

2001). A basic idea of this approach is that the modes of the probability density function

of a dataset leads to the construction of influence zones that are intrinsically related to the

number of clusters. Because the number of clusters depends on the scale factor which is the

window width, a careful selection of the factor is needed. Moreover, due to difficulty in density

estimation for high dimensional data set, either dimensionality reduction technique should be

employed as a preprocessing step, or its application may be restricted to low dimensional cases

such as image segmentation.

There have been several other estimating methods that were combined with specific clus-

tering algorithms. Kothari and Pitts (1999) modified the cost (objective) function in k-means

clustering. As can be seen in Equation 2.16, the cost function tries to distribute the cluster

centers so as to minimize the within-cluster sum of squares. They inserted an additional term,

the regularization term that requires one more objective that the sum of squared distances

from a cluster to its nearby cluster should be minimized. Hence, the concept of CH(g) index

is embedded to the objective function in the k-means clustering framework. A similar research

which is called x-means clustering is shown in Pelleg and Moore (2000). After each run of the

traditional k-means algorithm, it decides which subset of current centroids should split them-

selves in order to better fit the given dataset by computing Bayesian Information Criterion.

Lukashin and Fuchs (2001) employed a heuristic optimization approach, which is simulated

annealing, not only to minimize the within-cluster sum of squares but also to optimize the cut-

off distance value that is critical to decide the number of clusters. Salvador and Chan (2004)

used a regression fit on the space of the number of clusters versus the within-cluster sum of
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squares from hierarchical clustering methods to find the best number, and Sun et al. (2004)

embedded a cluster validity index into the existing Fuzzy C-means clustering method.

As mentioned above, the majority of previous research has focused on how much compact

clusters can be obtained by varying the number of clusters with the measurement the within-

cluster sum of squares. They decide the number of clusters when the measurement of within-

cluster sum of squares is not improved significantly although we increase the number of clusters

by one. This mechanism may like to assume that the current structure of clustering consists of a

number of clusters where each cluster is convex-shaped, e.g. spherically shaped or ellipsoidal.

What they want to assert under this assumption is that it is meaningless to divide one of

such clusters into two groups and now we thus have the most promising number of clusters.

Because of this assumption, however, they may fail to identify the correct number of clusters

for a dataset that has more complicated cluster structure, e.g. a structure having not only

convex-shaped but also arbitrarily non-convex-shaped clusters, since sometimes the within-

cluster sum of squares is not having an important effect for such a structure of clustering.

Here is our research motivation. Measuring the quality of clusters using the within-cluster

sum of squares for some arbitrarily shaped clusters means that we already fail to figure out

the organization or the hierarchy of clusters. Therefore, selecting a best number from several

candidate numbers based on this measurement of cluster quality may be unsuccessful. By

indicating these negative aspects that the most of previous approaches has, we would like to

propose a more general type of estimating method. This research thus starts with suggesting

a new goodness measurement of clustering that may work for not only convex-shaped but also

arbitrarily non-convex-shaped clusters.
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CHAPTER 3. MEASURING CLUSTER QUALITY

This chapter is an extended content of the section 2.2.2 in the respect of that we mention

about evaluating goodness of clustering. Let us recall the definition of clustering. Clustering

is commonly defined as a task of finding natural groups in a dataset such that the objects in

the same group are more similar than those in the other groups. Since there is no completely

agreed definition of the natural groups and the similarity between objects or groups yet, it is

generally acknowledged that data clustering is a challenging task. Discovery on definitions of

natural groups and similarity between objects or groups is the problem that we may have to

solve perpetually in the clustering field.

Distance, especially the squared Euclidean distance for objects placed in a continuous space,

has mostly been used in order to define the similarity (in fact, dissimilarity) between objects,

and the within-cluster and/or between-cluster sum of squares have also been contributing

on the definition of the natural group, as mentioned in chapter 2. The measure of within-

cluster sum of squares represents the amount of how compact the objects in the same cluster

are. Although it is not doubtful that more compact is the better, meaning that the degree

of compactness can measure the goodness of clustering, its inability to detect clusters with

diverse shapes and sizes is a fundamental limitation. More trials to overcome this limitation

are needed for better cluster analysis, and our research starts from this point.

Figure 3.1 shows two simple examples where each has a different type of clusters. Even

though the size of each example is very small, they are good enough to show that it will be

difficult to have one single measure of cluster quality that works for both of types. We may

need to use different types of measurement for different types of cluster structures. In order to

quantify the cluster quality, two measurement metrics will be introduced in this chapter. The
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first is surely the compactness being considered as the most important measure in a numerous

number of previous research studies and the second one is the connectivity that has been

received less concern than the compactness, but that we believe as an important factor.

(a) 3 clusters (b) 2 clusters

Figure 3.1: Two different types of clusters in two dimensions

3.1 Compactness

As the most of previous research studies have been doing, we would also like to define the

compactness using the within-cluster sum of squares around centroids. Again, suppose that we

have a partition P consisting of g number of clusters as shown in Equation 2.4 under assumption

that the data matrix X = (xij) with p features measured on n independent observations is

available. Then, the compactness is given by

CP(P ) = tr

 g∑
j=1

∑
i∈Cj

(xi − cj) (xi − cj)>
 = trWg =

g∑
j=1

1
2|Cj |

 ∑
i,i′∈Cj ,i 6=i′

d(i, i
′
)

 . (3.1)

where cj is defined in Equation 2.11. As shown in the above equation we take the trace of

within-cluster cross product matrix as a scalar measure. In some literature the determinant

instead of the trace has been used to obtain the scalar measure of the scatter matrix. However,

since the scatter matrix will be singular if the number of clusters is greater than or equal to
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the dimensionality, the determinant option is obviously a poor choice in such a case. Note that

this quantity should be minimized for a good clustering result.

It is important to note its several properties that are related to the number of clusters.

At first, the compactness tends to decrease as the number of clusters increases. Second, the

maximum value of CP(P ) obviously occurs when the partition P has a single cluster, saying

that the partition P is the original dataset itself. In reverse, if the partition P consists of n

singleton clusters, meaning that each object forms its own cluster, the CP(P ) has its minimum

value that equals to ‘0’. Figure 3.2 illustrates a trend of data compactness at varying number

of clusters for two-dimensional data examples shown in Figure 3.1.

(a) (b)

Figure 3.2: Trend of compactness at varying number of clusters

The first example consists of 18 instances forming three clusters as shown in Figure 3.1a. At

each number of clusters the hierarchical Ward’s clustering method was employed in order to

obtain each partition, and the compactness was then calculated using Equation 3.1. Figure

3.2a shows its trend. The maximum value of compactness is at one number of clusters and its

minimum value is zero at 18 clusters. Because of the shown special structure of clusters of the

second example consisting of 58 objects, we applied the single linkage hierarchical algorithm

to this dataset at each number of clusters. A set of compactness was obtained by the same

equation, and its trend was graphed in Figure 3.2b. The same properties, the maximum
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compactness at one cluster and the decreasing trend at increasing number of clusters, appear

in this figure. Due to space limitation we truncated the graph at 20 clusters but observed the

zero compactness at 58 clusters. Through these two simple examples, we have confirmed the

mentioned properties of compactness.

One more imperative aspect from Figure 3.2a is that the compactness steeply decreases

from one to three clusters (A true number of clusters in this example is regarded as three.),

while it slopes gently downwards toward the zero. This characteristic has been used to decide

the number of clusters in many clustering studies. Such a characteristic, however, does not

appear in Figure 3.2b, so it could be risky to determine the number of clusters from the trend

of compactness for the similar or same type of dataset with the second example. We will

discuss about this in Chapter 4 in more detail.

3.2 Connectivity

We believe that a new goodness measurement that will be proposed in this section is

simple but very practical. A fundamental intuition behind this measure is that we will give

some penalties for disconnection of objects which are actually supposed to be grouped together

but belonged to different clusters.

3.2.1 Nearest Neighbor Consistency

Before defining the measure of connectivity we need to declare two concepts in data clus-

tering that is based on k-Nearest Neighbor (k-NN) classification technique. k-NN classification

proposed about 50 years ago basically assumes that data objects in each class are distributed

consistently. Under this assumption this classification technique classifies a new object by the

majority voting on class labels of its k nearest neighbors. The new object is thus classified to

the most consistent class with its neighbors. Motivated by this principle Ding and He (2004)

proposed a new concept of cluster nearest neighbor consistency as stated below.



www.manaraa.com

30

Cluster k-NN Consistency

For any data object in a cluster, its k-Nearest Neighbors should also be

in the same cluster.

Again, data clustering partitions a given data into sub-groups such that the objects in

the same cluster are very similar each other and those in different clusters are different. If

the objects in the same cluster are very similar each other, then it is likely that the nearest

neighbors of any object in a cluster are also in the same cluster. Therefore, the cluster k-NN

consistency has the same purpose with data clustering.

Another concept proposed in Ding and He (2004) is the ‘k-Mutual Nearest Neighbor con-

sistency’. If an object i’s nearest neighbor is the object j and the object j’s nearest neighbor

is the object i, then we say that the object i’s mutual nearest neighbor is the object j and the

object j’s mutual nearest neighbor is the object i. In general, if we assume that the object i is

in the pth nearest neighbor and the object j is in the qth nearest neighbor and k is the maxi-

mum value between p and q, we say that the object i is in the k-mutual nearest neighbors of

the object j and vice versa. According to this concept, the cluster k-Mutual Nearest Neighbor

Consistency can be stated as below.

Cluster k-MN Consistency

For any data object in a cluster, its k-Mutual Nearest Neighbors should

also be in the same cluster.

The concept of k-MN consistency is stronger and more interactive among objects in a dataset

than the k-NN consistency concept, and it is a better representation of the natural grouping

in the definition of clustering. If we can create a measure that includes both k-NN and k-MN

consistency concepts, then we believe that it will greatly contribute on a good cluster analysis.
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3.2.2 Proposed Connectivity Measure

In addition to the compactness measurement, we introduce another one through the k-NN

consistency concept and the k-MN consistency concept as well, in order to evaluate cluster

quality. Let σi(k) denote a set of k nearest neighbors of the object i as below:

σi(k) = {j|d(i, j) ≤ d(i, k), kth nearest neighbor of object i} (3.2)

The connectivity at the given partition P = {C1, C2, . . . , Cr, . . . , Cg} can be defined as a

penalty for violation of both k-NN and k-MN consistency. It is given by

CN (P ) =
∑
r

∑
i∈Cr

∑
j /∈Cr

(
b
(1)
ij ·

1
d(i, j)

+ b
(2)
ij ·

1
d(i, j)

)
, (3.3)

where,

b
(1)
ij =

 1, if j ∈ σi(k)

0, otherwise
and b

(2)
ij =

 1, if i ∈ σj(k)

0, otherwise
. (3.4)

This metric measures the amount of penalties for the objects that violate the cluster k-NN

consistency and the cluster k-MN consistency. If the neighbor object j of the object i does

not belong to the same cluster, then its penalty, which is an inverse of the distance between

the object i and j, will be imposed. Conversely, if the neighbor object i of the object j is not

grouped in the cluster to which the object j belongs, then the same amount of penalty will also

be imposed. Either the first term or the second term in the parenthesis in Equation 3.3 forces

either the object j or the object i to satisfy the cluster k-NN consistency. Assume that the

object i and j are in the relationship of k mutual nearest neighbors but do not belong to the

same cluster. Then, both of the indicator variables, b(1)
ij and b(2)

ij , will be one, and so the penalty

will be paid twice because they do not hold the cluster k-MN consistency. It means that we

impose more penalty for violating the k-MN consistency than violating the k-NN consistency.

Since the penalty term is an inverse distance between two objects, this measurement gives

more penalty for closer neighbor objects than further neighbor objects. Note that although

the proposed measurement is a penalty function, we named it as ‘connectivity’ rather than

‘disconnectivity’. It is not difficult to notice that this quantity, similarly to the compactness,

should be minimized for a good clustering solution.
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Figure 3.3 shows a conceptual illustration of the connectivity measure. All objects in the

figure are supposed to be in the same cluster. Let us separate them into two different clusters

by the bold curve, then the connectivity measure will be increased due to the penalties on the

grey-shaded objects.

Figure 3.3: Illustration of penalized objects

Recall the example of 18 objects shown in Figure 3.1a. We employed the same settings of

clustering procedure, applying Ward’s method at different number of clusters from 1 to 18. We

then computed the connectivity measure using Equation 3.3 for each partition. Figure 3.4a

shows the trend of the connectivity measure.

(a) (b)

Figure 3.4: Trend of connectivity at varying number of clusters
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At a fixed number of nearest neighbors of an object the maximum value of connectivity is

already decided, and it occurs when there are n singleton clusters. In reverse, its minimum

value which is zero will obviously be happened on a single cluster of the dataset regardless

of the value of k. Also, the connectivity value will be increased by the penalized objects as

we partition a data into more and more sub-groups. Figure 3.4a shows those properties of

the connectivity through a simple example. This metric also gives us a hopeful indication for

estimating the optimal number of clusters as the compactness does. As can be seen in Figure

3.4a, the connectivity value stays at zero, which is the minimum value, from 1 to 3 cluster

number, whereas it increases from 4 cluster number, since the partitions at 1 to 3 cluster number

hold the cluster k-NN and k-MN consistency. With the single linkage clustering method based

on the dataset in Figure 3.1b, we also obtained Figure 3.4b and it shows a very similar trend to

Figure 3.4a. As for the matter of determining the number of clusters, this graph also indicates

the zero connectivity at 1 and 2 clusters and the connectivity value increases as the number

of clusters increases. It means that the connectivity may be able to select a good number

of clusters from data and this is a better symptom than Figure 3.2b. This also implies the

potential of this metric that we may be able to desirably handle datasets which look like not

only Figure 3.1a but also Figure 3.1b containing more complicated structure of clusters.

An algorithmic procedure of Equation 3.3 is as follows. For each object in a dataset, we

first look for its k-NN objects. After that, we confirm whether each nearest neighbor belongs

to the same cluster or not, and then penalize some neighbor objects that do not belong to

the same cluster with the object under consideration. Since we sequentially consider all the

objects in the dataset for this procedure, we can implement Equation 3.3 that verifies both the

cluster k-NN consistency and the cluster k-MN consistency.

The goodness of clustering is typically refereed by a clustering algorithm that generates

relative clusters and as an internal assessment criterion as well. A more general goodness

function that can be adopted for a large range of clustering algorithms will be necessary. One

or more well-established goodness functions of clustering can greatly affect not only for better

clustering but also for determining the optimal number of clusters in a dataset. In other words,
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if such goodness functions are available, we may be able to discover the true cluster structure

in data, although some clusters in the dataset are arbitrarily shaped. Two measurements, the

compactness and the connectivity, introduced in this chapter will be used for constructing a

good clustering method and estimating the correct number of clusters as well. They will be

mentioned in Chapter 4 and Chapter 5 correspondingly.
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CHAPTER 4. IDENTIFYING THE NUMBER OF NATURAL

CLUSTERS IN DATA

4.1 Introduction

Identifying the correct number of clusters from a dataset by examining the partitions that

a clustering algorithm generates has been known as one of the most challenging tasks in cluster

analysis. As mentioned earlier people generally use the internal indices in order to examine the

clustering solutions, and various approaches to this problem have been suggested over the years.

In Section 2.2.2 we have briefly reviewed several prominent estimating methods. Although each

of those seems to pursue different actions, most of them can be characterized as an approach

that looks for the location of ‘elbow’ on the plot of compactness versus the number of clusters.

It is expected for them that, in a typical plot, the compactness decreases monotonically as the

number of clusters increases, but from some point onwards the decrease flattens remarkably.

For example, the 3 cluster number in Figure 3.2a is the typical elbow point, and the correct

number of clusters in this example is truly 3. The Hart(g), KL(g), and Gap(g) were invented

to point out the location of elbow, 3 in this example, by detecting the minimum ratio of the

3rd compactness to the 4th compactness, the maximum ratio of the difference between 2nd and

3rd compactness to the difference between 3rd and 4th compactness, and the biggest difference

between the expected and observed compactness that occurs at 3 respectively. The CH(g) and

Sil(g) follow the intrinsic definition of cluster analysis which is homogeneity within a cluster

and heterogeneity between clusters by utilizing the compactness with the separation concept.

However, we believe that none of those may be able to detect the correct number of clusters

for a dataset that includes non-spherical clusters, since the measurements for evaluating cluster

quality consider the amount of compactness only in the most cases. The Clest proposed by
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Dudoit and Fridlyand (2002) also falls into the same situation, because the employed classifier

in their approach was the discriminant analysis and this classification technique works under

assumption that the data is Gaussian-distributed, meaning that the classifier does not work

properly for a non-Gaussian dataset.

In this chapter we propose a new estimating method to detect the correct number of clusters

for a dataset that has not only spherically shaped clusters but also non-spherically distributed

objects in a cluster. In order to achieve our purpose we incorporate both the compactness

and the connectivity in our method. A resampling-like framework that can be seen as a sort

of meta-learning will help to give more reliability to the chosen number of clusters. Details

of the proposed procedure are described in Section 4.2 and we experiment with the proposed

method based on several synthetic data-generating models in Section 4.3 in order to evaluate

the performance of the new method.

(a) 1 cluster (b) 2 cluster (c) 3 cluster (d) 4 cluster

Figure 4.1: Desirable clustering behavior at increasing number of clusters

An assumption over the task of determining the correct number of clusters is that we always

occupy a good clustering method that either generates a desirable hierarchy of data clusters

or preserves an identical characteristic for each cluster. For example, since k-means clustering

tends to generate convex-shaped clusters, although we increase the number of clusters from g to

g+1, any cluster generated at either g or g+1 should be preserved to have the spherical shape.

Figure 4.1 shows what is the cluster hierarchy at varying number of clusters that we expect. If

the clustering method that generates the results in the figure conducts the case of 5 clusters,

then one of two circles in the last plot should be split into two sub-groups as described by
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two ellipsoids. This assumption should be made on any arbitrarily distributed dataset. Again,

our objective is to detect the optimal number of clusters under a good clustering algorithm’s

working, as the other estimating approaches that have been suggested so far have the same

purpose.

4.2 Proposed Estimating Method

4.2.1 Location of Elbow by Compactness and Connectivity

Our estimating method is on the line of the studies of the elbow phenomenon. However,

one major difference between the proposed method and the previously developed approaches

is that we do not assume the shape of data clusters such as Gaussian-distributed objects. We

thus look for the location of elbow not only from the plot of the compactness but also from

the connectivity plot.

As for the compactness measure we adopt Krzanowski and Lai’s (1985) idea in order to

select the elbow point. Therefore, we search for the maximum ratio between two consecutive

differences of compactness from the conducted compactness plot. From the given values of

CP’s, the compactness measure chooses the promising number of clusters by

g∗(CP) = argmax
g≥2

∣∣∣∣∣∣(g − 1)
2
pCP(g − 1)− g

2
pCP(g)

g
2
pCP(g)− (g + 1)

2
pCP(g + 1)

∣∣∣∣∣∣ . (4.1)

As discussed in Section 3.2.2 and shown in Figure 3.4, the connectivity plot may also have

the elbow point on its plot, but the bended direction is opposite to the compactness plot due to

its increment characteristic at increasing number of clusters. It is very likely that the optimal

number of clusters is found at the location where the connectivity is significantly increased

which is the elbow, since the penalties are given to the objects that is supposed be grouped

together. Therefore we would like to select the most promising number of clusters from the

connectivity plot by

g∗(CN ) = argmax
g≥1

(θg(CN )) , (4.2)
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where

θg(CN ) =

 atan (CN (g + 1)− CN (g)) , if g = 1

atan (CN (g + 1)− CN (g))− atan (CN (g)− CN (g − 1)) , otherwise
. (4.3)

Figure 4.2 illustrates θg’s in a hypothetical connectivity plot which looks like Figure 3.4. The

θg = 0 means that the cluster k-NN and k-MN consistency are satisfied. As the number of

clusters increases, it is more difficult to hold those consistency conditions. Hence, the basic

idea of Equation 4.2 expects that the location we are looking for is the point right before

breaking the consistency condition, or increasing the sum of penalties significantly. We believe

that this idea works with a good clustering algorithm that can consistently generate desirable

clustering solutions at varying number of clusters, as mentioned at the end of the previous

section. The desirable clustering results should also be guaranteed for any arbitrarily shaped

dataset. Again, it is important to have a good clustering algorithm in order to detect the true

number of clusters. Let us take a look at the difference between θ4 and θ
′
4 in the figure. The

intention that we measure θ4 instead of θ
′
4 is to ignore previously cumulated sum of penalties.

We can measure the additionally increased amount of penalties by observing the degree of θ4.

It means that the additional increment can have a negative sign so as θ5 and θ6 do, and we do

not expect that such negative values of angles can come up with a correct number of clusters.

The geometrical meaning of g∗ in Equation 4.1 is that although we split one cluster into

two parts there is no significant improvement on compactness, because the objects forming

that cluster are almost evenly distributed over the space that the cluster occupies. On the

other hand, the g∗ from the connectivity says that if we divide one cluster, that is really

supposed to be one cluster, into two clusters, the number of objects violating the k-NN and

k-MN consistency will be radically increased.

Consequently, our decision will be made based on both the compactness and the connec-

tivity. If they say an agreed number as the optimal number of clusters, we will be able to make

a decision with doubled reliability. In some easy cases such as Model 1 in our experiments as

shown in Section 4.3, both of them arrived at an agreement of the same number of clusters.

However, for some reasons, it may possibly appear that sometimes they come into conflict with

each other. Hopefully, we may be able to address this issue by incorporating the concept of
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Figure 4.2: A hypothetical plot of CN versus number of clusters

stability. A meta-learning framework will be designed for this purpose. The proposed method

will thus examine a set of partitions resulted from clustering randomly perturbed datasets

rather than one single partition of a single dataset. Detailed description will be shown in the

following two sections.

4.2.2 Populating Synthetic Samples

In supervised learning, a diversity of techniques for combining classifiers has been developed

and theoretical foundations and behavior of those techniques have been studied, proving their

validity and providing some guidelines for designing such meta-models (Lam and Suen, 1997;

Kittler, 1998; Kittler et al., 1998; Jain et al., 2000). One of the most famous meta-learning

methods is the Bootstrap Aggregating called as Bagging (Breiman, 1996) that manipulates the

training samples. Briefly, the Bagging is as follows. Each of multiple classifiers built on sets of

bootstrapped samples casts a vote for the target value, and one final prediction value is decided

by the majority voting principle. The resampling procedure in Bagging has been applied for

cluster validation (Levine and Domany, 2001; Fred, 2001). In order to find consistent or stable

clusters from a dataset in their research, the training set is bootstrapped and a clustering

algorithm is then applied to obtain multiple partitions. Evaluation of those partitions using

some external indices can recover consistent clusters from the training dataset. The method

we propose in this research also follows a similar scheme. However, instead of resampling the
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Table 4.1: Decsription of Populate() function

1 Function Populate(X = (xij),K)

2 Input

3 Given data table X = (xij), (i = 1, 2, . . . , n; j = 1, 2, . . . , p)

4 Maximum value of nearest neighbors K

5 For i← 1 To n

6 Generate a random number k, where k ∼ U [1,K].

7 Select xi′ ← kth nearest neighbor of xi from X.

8 Generate a random number α, where α ∼ U [0, 1].

9 Create ith new object by xnewi ← α · xi + (1− α) · xi′ .

10 End For

11 End Function

given dataset, we generate a number of synthetic datasets by some amount of data distortion,

which may be able to reflect the true structure of given dataset. Therefore, it can be said in

this study that the proposed method is also based on the stability of clustering with respect

to perturbation that is the addition of noise.

SMOTE (Synthetic Minority Over-sampling Technique) was basically invented for unbal-

anced data classification (Chawla et al., 2002). This method enlarges the mass of the minority

class by populating artificial minority class instances in order to cope with the data unbalance,

that is, to obtain improved accuracy over the minority class. We adopt one part of the SMOTE

that generates synthetic objects, since we believe that it can distort the given dataset efficiently

while preserving the true data structure. Let us call the part we employ as ‘Populate’, and

this, with a little modification for its fitness to our research, is described in Table 4.1 in terms

of a function. Its implementation is to introduce synthetic objects along the line segments

joining one existing object with one of its k-nearest neighbors. Hence, the newly generated

object is a convex combination of an existing object and its one of k-nearest neighbors.
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In the Populate() function, there are two locations inserting randomness; the first part

choosing the kth nearest neighbor of the ith object, and the second part creating a new object

that lies on the line segment between the ith object and its kth nearest neighbor. Of course,

the first element gives more perturbation to the new synthetic dataset than the second part,

because the range of randomness in the second part is restricted by the chosen number of k.

Assume that the selected number of k is very small, saying that it equals to 1. Then, the

newly produced object will be placed nearby the ith object, since it lost a chance to reach to

a further object. Figure 4.3 demonstrates how much distortion can be introduced to the new

dataset by setting of the maximum value of nearest neighbors K.

(a) Original data (n = 120) (b) A sample (K = 50) (c) A sample (K = 80)

Figure 4.3: Data distortion by Populate() function at different number of K

The most important reason that we did not choose a resampling method but chose this

scheme of generating objects is to cope with sparseness of a particular cluster. A sampling

method such as bootrstrap resampling may not be able to preserve the original cluster structure

in some cases. For example, suppose that one cluster in Figure 4.3a has a much smaller number

of objects than the other clusters. Since the objects in such a cluster with a lower density have

a relatively lower chance to be selected, resampling may result in a structure of two clusters

in some sampled datasets. However, the scheme generating synthetic objects is free from this

kind of risk in spite of randomness insertion. Furthermore, we can easily control the amount

of perturbation by choosing the number K.
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4.2.3 Procedure of the Proposed Method

Figure 4.4: Procedure of the proposed estimating method

The whole procedure of the proposed method for indentifying the correct number of clusters

is described in Figure 4.4. Based on the given dataset, an artificial dataset Db, b = 1, 2, . . . , B,

is generated by the Populate() function with a randomly selected number k1 that is to give a

different amount of distortion. Note that the number k1 in this step is the maximum number

of nearest neighbors denoted by K in the description of Table 4.1 An employed clustering

algorithm constructs a partition P gb , g = 1, 2, . . . , G, for each date set Db. We need to predefine

the maximum possible number of clusters G to be tested. Before going through the step

measuring cluster quality, we introduce another randomness by deciding k2 which is also the

number of nearest neighbors for calculating the connectivity. Since the connectivity measure is

affected by the parameter k2, we leave the problem of setting this number to the randomness

in this step. The intention behind inserting randomness into the two places for generating a

synthetic dataset and calculating the connectivity was based on our expectation that the true

and unknown number of clusters should consistently be able to appear over various degrees

of perturbation. In other words, the true number should cover a majority of the space of the

parameters, while a false number may occupy a specific range of the parameters to be appeared.
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The computed compactness CPgb and connectivity CN g
b by Equation 3.1 and 3.3 respectively

induce their own optimal number of clusters g∗b (CP) and g∗b (CN ) according to Equation 4.1

and 4.2. The aggregated g∗b ’s finally choose a single g∗ by majority voting scheme.

4.3 Experiments

A rigorous simulation study based on 13 data-generating models was conducted to show

the effectiveness of the proposed method. Those models were designed with consideration of

various types of variation sources such as dimension, number of objects, number of clusters,

noise objects, noise variables, shapes of clusters, and different degrees of sparseness for clusters.

The description of each model is depicted in Section 4.3.1. We compared the performance of

the proposed method with those of 7 existing approaches presented in Section 2.2.2 that are

CH(g), KL(g), Hart(g), Sil(g), Gap(g), BH, and Clest. The experimental results in terms

of accuracy are shown in Section 4.3.2. This section also provides some interesting findings

and interpretations.

4.3.1 Simulation Models

In order to evaluate the procedures for estimating the number of clusters in a dataset,

simulated datasets were used from a variety of data-generating models including some of those

commonly considered by Tibshirani et al. (2001) and Dudoit and Fridlyand (2002). The models

used for our experiments have different number of clusters, different number of variables,

different number of objects, different shapes of clusters, a wide range of covariance structure

for Gaussian-distributed clusters. We also included a number of irrelevant noise variables in

order to obscure the underlying cluster structure to be recovered. In addition to the noise

variables, noise objects uniformly distributed over the space were also under our consideration

with the same intention of adding noise variables.
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The choice of clustering algorithm for each model is important to cluster datasets properly,

because it is indeed meaningless to attempt finding the correct number of clusters based on

wrong clustering results as mentioned in Section 4.1. We selected an appropriate clustering

algorithm for each model to create a desirable cluster hierarchy at sequentially increasing num-

ber of clusters. Figure 4.5 shows representative examples of a good combination of simulation

model and clustering method. Hierarchical Ward’s clustering method was employed to acquire

the desirable clustering solutions at different number of clusters for Model 1. Its clustering

capability for this model is illustrated in Figure 4.5a. However, it is obvious that the Ward’s

method does not well cluster the dataset which has the non-spherically shaped clusters such

as the three rings in Figure 4.5b. The dataset in this figure was generated from Model 3. Hi-

erarchical Single linkage method was therefore employed to cluster the data and the resulting

cluster hierarchy over the different number of clusters was well-constructed as shown in Figure

4.5b. The selected clustering algorithm will be mentioned with the description of each simula-

tion model. The 13 simulation models are as below, and Figure 4.6 shows some examples from

two-dimensional models only.

Model 1: Three clusters in two dimensions

The clusters are Gaussian-distributed by the variance-covariance matrix of Σj = 0.3 · I2,

j = 1, 2, 3, where I2 denotes a 2 × 2 identity matrix. They have (100, 100, 100) instances

centered at µ1 =

−1.8

−1.5

 , µ2 =

 0.3

1.5

 , µ3 =

 1.8

−1.5

 .

Model 2: Two elongated clusters in three dimensions

Each cluster is generated as follows. Set x1 = x2 = x3 = t with t taking 100 equal spaced

values from -0.5 to 0.5, and then Gaussian noise with standard deviation 0.1 is added to each

variable. Cluster 2 is generated in the same way, except that the value 2 is added to each vari-

able at the end. The result is two elongated clusters stretching out along the main diagonal

of a three dimensional cube. This model is adopted with intention to break down the Gap(g)
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method. Hierarchical Ward’s method was employed to cluster datasets generated from this

model.

Model 3: Three rings in two dimensions

The angular coordinates (θ) of the data instances are selected from a uniform distribution,

and the radial coordinates (r) are Gaussian-distributed around three different radii as shown

below.

θ ∼ U [0, 2π], r ∼ N [R, σ2]

The outer ring parameterized by R = 4.0 and σ = 0.2 consists of 300 data instances. The

bigger inner ring consisting of 200 data instances has R = 1.0 and σ = 0.1. Lastly, the smaller

inner ring with R = 1.0 and σ = 0.1 consists of 100 instances. This model was to produce an

example of non-spherically shaped clusters, and it will be very hard for some cluster methods

such as k-means algorithm to cluster this example properly. We employed the hierarchical

single-linkage method to cluster the datasets generated from this model, since the results by

this method were well-conducted as we confirmed from Figure 4.5b.

Model 4: Three clusters in two dimensions with noise objects

Three clusters are generated from Model 1 and another 100 noise objects distributed uni-

formly over the two-dimensional space are added. The variables of noise object are indepen-

dently simulated from a uniform distribution U [mini,maxi] where mini is the minimum value

and maxi is the maximum value of ith variable (i = 1, 2). In this case, it is very likely to

see that Ward’s method, complete linkage method, average linkage method, or model-based

algorithm properly clusters the dataset. We used the Ward’s method.

Model 5: Two elongated clusters in ten dimensions with seven noise variables

The two elongated clusters are generated as in Model 2, but, in addition, seven noise vari-

ables are simulated independently from the Gaussian distribution with mean 0 and variance

v2 for the vth variable, v = 4, 5, . . . , 10. Hierarchical Ward’s method was also employed for
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this model.

Model 6: Three nested spheres in three dimensions

This model is a three-dimensional version of Model 3. The angular coordinates (θ) and

the radial coordinates (r) are the same as in Model 3. In order to create a sphere we need

to define one more coordinates for the zenith angle. The third coordinates (ϕ) are generated

from the uniform distribution which is U [0, 2π]. These three coordinates can be converted into

Cartesian coordinates by the following transformation, x1 = r sinϕ cos θ, x2 = r sinϕ sin θ,

x3 = r cosϕ. Single linkage algorithm will cluster the datasets generated from this model.

Model 7: Five clusters in ten dimensions

Each cluster is randomly chosen to contain either 25 or 50 objects, with means also ran-

domly selected from the Gaussian distribution N [010, 3.6I10] where 010 denotes a 10×1 vector

consisting of zeros and I10 denotes a 10×10 identity matrix. Such a design indicates that each

simulation of this model generates a different set of cluster centers. The objects in a given

cluster are independently drawn from another Gaussian distribution with an identity covari-

ance matrix and the selected mean vector. In order to preserve the structure of five clusters,

any simulation, in which the Euclidean distance between the two closest objects belonging to

different clusters is less than 1, will be removed. Ward’s method was adopted in this simulation.

Model 8: Five clusters in ten dimensions with noise objects

The design for setting cluster centers is the same as in Model 7, but it is different that each

cluster has 50 objects only, and the Gaussian distribution for generating the cluster means is

N [010, 5I10] in order to introduce more possibility of further separation of the clusters. The 50

objects in each cluster are also generated from the standard multivariate normal distribution.

At this point, we check if the condition that the distance between two closest objects belonging

to different clusters should be greater than 1 is satisfied. If it does not hold, we discard the

simulation and repeat the above procedure. For the simulated dataset satisfying the condi-
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tion, we then add 50 more objects uniformly distributed over the ten-dimensional hypercube.

We also employed the Ward’s clustering algorithm to cluster the datasets simulated from this

model.

Model 9: Two dense and three sparse clusters in two dimensions

All five clusters are drawn from Gaussian distributions with the following setting of means

and one identical covariance matrix which is 0.1I2.µ1 =

−2

−2

 , µ2 =

 2

2

 , µ3 =

−2

2

 , µ4 =

 0

0

 , µ5 =

 2

−2


Two dense cluster corresponding to µ1 and µ2 consist of 100 objects each, and the other three

clusters which means are µ3, µ4, and µ5 respectively have 10 objects each to make them sparser

than the other two clusters. Ward’s linkage method is suitable to cluster the datasets generated

from this model, so it was adopted.

Model 10: Nine small clusters forming three large clusters in two dimensions

First three clusters are created from Model 1 and we then add 7 to the first variable to move

them along with the first axis. The second and third three clusters are also generated from the

same model, but then −7 is added to the first variable of the second three clusters to shift them

into the opposite direction to the first three clusters while we add 10 to the second variable of

the last three clusters to move them away from the other two clusters. Consequently, each of

three clusters forms one large cluster in a global view of the clusters structure. Ward’s method

is also good for clustering the datasets.

Model 11: Four clusters drawing turbine blades in two dimensions

The objects in each cluster are randomly generated from the Gaussian distribution with

µj and Σj where j denotes the jth cluster. The µj and Σj are defined as below:µ1 =

 0

5

 ,Σ1 =

 0.01 0

0 2

 ,
µ2 =

−4

−4

 ,Σ2 =

 1.05 1

1 1.05

 ,
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µ3 =

 4

−4

 ,Σ3 =

 1.05 −1

−1 1.05

 ,
µ4 =

 0

0

 ,Σ4 =

 0.4 0

0 0.4

 .
Each cluster consists of 100 objects and these four clusters form the shape of turbine blades.

Model 12: Two clusters forming Taeguk in two dimensions

Two overlapped half-circles form the Taeguk shape. In addition to Model 3 and 6, this is an-

other simulation model for generating non-spherically shaped clusters where the compactness-

oriented estimating methods may fail to find the true cluster structure. The radial coordinates

r ∼ N [3, 0.32] are the same for both upper half-circle and lower half-circle, but the angular co-

ordinates are generated from θupper ∼ U [0, π] for the upper and θlower ∼ U [π, 2π] for the lower

correspondingly. By adding positive numbers 3 and 1.5 to the first variable and the second

variable of the lower half-circle respectively, we shift the lower half-circle for the purpose of

overlapping and the Taeguk mark is finally formed.

Model 13: Null (single cluster) data in ten dimensions

200 data objects are uniformly distributed over the unit square in 10 dimensions. This

model is designed in order to show that some of the estimating methods in this simulation

study are able to detect the non-cluster structure meaning a single cluster whereas some of

those are not.
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4.3.2 Experimental Results

We performed 50 simulations for each model to generate 50 datasets from one data-

generating model, and the 8 estimating approaches were then applied to find the correct

number of clusters. We considered a range of 1 to 10 as the possible number of clusters. Table

4.2, 4.3, 4.4, and 4.5 provide a detailed account of the experimental results. Numbers in the

tables are counts out of 50 trials, and g∗ is the designed number of clusters for each model that

is regarded as a true number of clusters. In addition to the tables, the results are summarized

in Figure 4.7 in terms of the percentage of the correct estimates. Note that we considered both

3 and 9 as correct estimates for Model 10.

The overall appearance in this simulation study was that there is no single approach always

outperforming the others across the 13 simulation models, meaning that some methods showed

good performances for some simulation models but they failed to discover the true cluster

structures for another models. However, it is noticeable that the proposed method showed

good accuracies in general although it was not the best for all the models. In order to help our

understanding the results in this section, some comments and interesting results are highlighted

as below.

For the simulation model 1 which was provided as the easiest case, all methods except

Hart(g) and Clest estimated the true number of clusters in the most trials out of 50 simu-

lations. The proposed method, CH(g), Sil(g), and Gap(g) perfectly recovered 3 number of

clusters during all 50 trials. In the experiments of Model 2, five methods among the eight,

which are the proposed method, KL(g), Sil(g), BH, and Clest, were successful to detect the

correct number of clusters. It can be seen that CH(g), Hart(g), and Gap(g) entirely failed to

distinguish between one and the other cluster. This simulation model pointed to the weakness

of those three approaches. Such a weakness of those against this model is a consistent finding

with the experimental results shown in Tibshirani et al. (2001) and Dudoit and Fridlyand

(2002). In a majority of the simulations from Model 3 that is a non-spherically shaped case,

only the proposed method was successful to estimate the correct number of clusters. It is

interesting to note that Gap(g) consistently indicated a single cluster for this model, and this



www.manaraa.com

52

result agrees with the working attitude of the Gap(g) when we consider that the 3 rings occupy

all around of the space that encloses those 3 rings.

Based on the results from the first three models, we would like to mention one feature

of the proposed estimating method. Model 1 and Model 2, in fact, belong to somehow easy

clustering problems. We observed that the g∗b ’s from the both compactness and connectivity

were quite consistent, although we did not report here. In such easy cases, we may be able

to remove the meta-learning scheme, saying that we do not have to generated multiple data

sets, since just one calculations of the CP and CN will probably agree upon the estimate of a

single cluster number which is correct. However, in the case of Model 3, a quite large range of

g∗b ’s was observed, while the majority voting finally found the correct answer in around 80%

of trials. It might be due to either wrong clustering solutions from the clustering algorithm

itself or randomness from calculating CN . What we believe from this observation is that the

meta-learning scheme used in this research may give a chance to correctly cluster objects to

the employed clustering algorithm and/or to properly calculate the CN . In the meantime, the

compactness did not contribute to decide the optimal number at all in Model 3. The estimated

g∗b (CP)’s were wrong in many cases out of the 50 trials and also inconsistent as well.

It appears that the noise objects in Model 4 might obfuscate the detection capability of

BH. Since this approach relies on the sampled subsets of the given data, some of those might

not be able to reflect the real clusters by introducing noise objects. Hart(g) was also totally

unsuccessful to detect the three clusters in data. For model 5, Gap(g) and Clest performed

poorly, while CH(g), Sil(g), and the proposed method showed good performance. It was

anticipated that in majority of the simulations of Model 6 all the existing approaches failed

to uncover the three spheres in the three-dimensional space. This result is similar to what we

found in the simulation of Model 3. For Model 7, the proposed method, CH(g), KL(g), and

Gap(g) completely succeeded to figure out five clusters from this model and Sil(g) and BH

showed a good performance, while Hart(g) and Clest entirely and almost failed. Adding noise

objects to Model 7 that is Model 8 was a more difficult task to all of the estimating methods.

In general, the performance of all approaches was worse than that in the simulation study of
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Model 7. The proposed method, however, showed the least degeneration. Sil(g) and Gap(g)

tended to select as a large number of clusters as possible. If we consider the larger number

of clusters in the simulation, they may choose the largest one. The simulation result of the

proposed method, CH(g), and KL(g) are satisfactory in this model.

We designed Model 9 for the purpose of seeing how BH works for the datasets having

different degrees of density in clusters. The experimental results in this model are saying that

the resampling based approaches that are BH and Clest were worse than the others except

Hart(g). The Hart(g) actually could not find the correct number of clusters for any of models

designed in this simulation study. The worse results of the resampling-based approaches could

be due to the fact that once they fail to preserve the original cluster structure when resampling

objects, it is apparent that the next procedures lose their working abilities. In this example,

since the objects in the sparser clusters have a low probability to be chosen in the sampling

step, some or all of the sparser clusters might not appear in the sampled datasets and this

could thus result in the poor performance of BH and Clest. However, the proposed method

could be more robust to such a situation, because it generates similar artificial objects rather

than resamples the existing objects.

One of the most interesting experiments in this research was Model 10. Let us take a

look at Figure 4.6e, and Model 10 generates this kind of structure of clusters. Two possible

numbers of clusters are shown in this figure. Someone may say nine clusters, whereas another

may see three clusters or someone may agree on both three and nine clusters. It depends

on two different points of view for this cluster structure. This example reminds us of the

definition of clusters and shows the fact that there is no single ideal definition of cluster. As

we mentioned very earlier in this paper, we are only following what the most of human eyes

or opinions agree on in order to describe something about cluster, for example, the number

of clusters in this research, and in this simulation model we may agree upon either three or

nine. An estimating method should then be able to tell us that two kinds of answer will be

available for this model. In the resulting table, the most approaches among eight, KL(g),

Sil(g), Gap(g), BH, and Clest, resulted in showing three clusters, while CH(g) completely
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came up with nine clusters. None of these did suggest two possibilities of three and nine, unlike

the human eyes do. However, in the fifty simulations, the proposed method voted on three 19

times and on nine clusters 31 times. This result asserts that the proposed method was able to

more mimic human eyes than any other methods. Since this simulation model generates two-

dimensional datasets, we were actually able to see the datasets generated from the Populate()

function based on this model and confirmed that a large k1 resulted in three clusters while a

small number of k1 tried to preserve the original structure of clusters. Hence, if the Populate()

function inserts more perturbation into the original dataset, then the resulting dataset will

be closer to the three clusters structure and the compactness and the connectivity will have

the same opinion on the three rather than nine. There is one more reason that the proposed

method could say both three and nine. Since we adopt the Krzanowski and Lai’s (1985) idea

in order to select the elbow point from the compactness, the most of g∗b (CP )’s was three. The

contributor to nine clusters was the connectivity due to the fact that more violating objects

appear when we go to from nine to ten clusters than the point from three to four clusters. We

observed all detailed results from the fifty simulations, and the rationales of such results of the

proposed method are, in summary, as follows: First, the compactness tended to come up with

three clusters whereas the connectivity did with nine clusters. Second, if the Populate() trick

generated a synthetic dataset that looked more like to three clusters, then both compactness

and connectivity became to agree upon the three clusters. Lastly, if the artificially generated

dataset was closer to the original one, nine clusters structure was asserted by the proposed

method to which the connectivity governed more by its consistent argument, which was nine,

than the compactness. We have attached the detailed results of the proposed method in Model

10 to Appendix A, in order to show how the method arrived at both three and nice clusters.

CH(g) and Hart(g) completely failed to catch up the structure of four clusters with Model

11, but the proposed approach, KL(g), Sil(g), Gap(g), and BH was generally successful to do

that. Clest failed to distinguish between three and four clusters, and it is a possible reasoning

that this method could not figure out the spherically distributed cluster at the center because

of a poor classifier, which was learned by DLDA (Diagonal Linear Discriminant Analysis),
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not handling a various types of covariance structure. For Model 12, the proposed method,

CH(g), Sil(g), Gap(g), and Clest performed well. Only three approaches, which are the

proposed method, Gap(g), and Clest, were able to detect the null cluster generated from

Model 13, because the others, in fact, do not have the capability of doing that due to their

own assumptions on the minimum number of clusters which is two.

Through this simulation study considering various types of variation source of data, we

have established that the proposed method showed regularly good results over the range of 13

models, while some of existing methods were not performing well for some specific cases.

Table 4.2: Estimated number of clusters (Model 1 ∼ Model 3)

Method Number of clusters
1 2 3 4 5 6 7 8 9 10

Model 1 (g∗ = 3)
Proposed 0 0 50 0 0 0 0 0 0 0

CH 0 0 50 0 0 0 0 0 0 0
KL 0 0 34 0 0 3 3 6 3 1

Hart 0 0 1 0 0 3 3 5 16 22
Sil 0 0 50 0 0 0 0 0 0 0

Gap 0 0 50 0 0 0 0 0 0 0
BH 0 0 36 12 2 0 0 0 0 0

Clest 0 29 21 0 0 0 0 0 0 0

Model 2 (g∗ = 2)
Proposed 0 50 0 0 0 0 0 0 0 0

CH 0 1 0 7 3 21 8 9 0 1
KL 0 45 0 1 0 1 0 1 0 2

Hart 0 0 0 0 0 0 0 3 12 35
Sil 0 50 0 0 0 0 0 0 0 0

Gap 0 0 0 11 5 23 10 1 0 0
BH 0 50 0 0 0 0 0 0 0 0

Clest 0 50 0 0 0 0 0 0 0 0

Model 3 (g∗ = 3)
Proposed 0 9 38 0 0 1 1 1 0 0

CH 0 0 2 3 2 5 11 8 11 8
KL 0 3 4 2 10 5 7 7 5 7

Hart 0 25 7 2 1 3 1 1 4 6
Sil 0 28 4 3 3 0 2 1 3 6

Gap 50 0 0 0 0 0 0 0 0 0
BH 0 42 7 1 0 0 0 0 0 0

Clest 0 50 0 0 0 0 0 0 0 0
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Table 4.3: Estimated number of clusters (Model 4 ∼ Model 7)

Method Number of clusters
1 2 3 4 5 6 7 8 9 10

Model 4 (g∗ = 3)
Proposed 0 0 50 0 0 0 0 0 0 0

CH 0 0 42 7 1 0 0 0 0 0
KL 0 0 39 1 0 1 1 2 0 6

Hart 0 0 0 0 0 3 3 10 11 23
Sil 0 0 29 11 10 0 0 0 0 0

Gap 11 0 39 0 0 0 0 0 0 0
BH 0 0 0 2 31 10 6 0 1 0

Clest 0 9 41 0 0 0 0 0 0 0

Model 5 (g∗ = 2)
Proposed 1 49 0 0 0 0 0 0 0 0

CH 0 38 12 0 0 0 0 0 0 0
KL 0 24 10 3 4 5 0 1 2 1

Hart 0 0 0 0 0 1 2 2 12 33
Sil 0 35 5 3 0 2 2 0 0 3

Gap 43 7 0 0 0 0 0 0 0 0
BH 0 25 19 3 3 0 0 0 0 0

Clest 3 17 20 6 1 1 1 0 0 1

Model 6 (g∗ = 3)
Proposed 0 4 33 2 1 1 5 2 2 0

CH 0 1 0 3 4 5 6 10 7 14
KL 0 3 2 4 3 7 6 8 3 14

Hart 0 30 14 1 2 2 0 0 0 1
Sil 0 50 0 0 0 0 0 0 0 0

Gap 50 0 0 0 0 0 0 0 0 0
BH 0 33 8 3 0 1 3 1 1 0

Clest 0 0 18 28 4 0 0 0 0 0

Model 7 (g∗ = 5)
Proposed 0 0 0 0 50 0 0 0 0 0

CH 0 0 0 0 50 0 0 0 0 0
KL 0 0 0 0 50 0 0 0 0 0

Hart 0 0 0 0 0 3 4 4 16 23
Sil 0 0 0 9 41 0 0 0 0 0

Gap 0 0 0 0 50 0 0 0 0 0
BH 0 2 2 0 36 9 1 0 0 0

Clest 0 25 5 3 17 0 0 0 0 0
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Table 4.4: Estimated number of clusters (Model 8 ∼ Model 11)

Method Number of clusters
1 2 3 4 5 6 7 8 9 10

Model 8 (g∗ = 5)
Proposed 0 0 0 1 48 1 0 0 0 0

CH 0 1 0 2 30 12 3 1 0 1
KL 0 1 3 4 34 7 1 0 0 0

Hart 0 0 0 0 0 1 0 5 18 26
Sil 0 0 0 0 0 0 0 0 0 50

Gap 0 0 0 0 0 0 0 0 0 50
BH 0 20 16 9 3 0 0 1 1 0

Clest 0 26 4 5 0 0 5 2 4 4

Model 9 (g∗ = 5)
Proposed 0 0 0 0 50 0 0 0 0 0

CH 0 0 0 0 50 0 0 0 0 0
KL 0 0 0 0 46 2 2 0 0 0

Hart 0 0 0 0 0 0 0 2 11 37
Sil 0 0 0 0 50 0 0 0 0 0

Gap 0 0 0 0 50 0 0 0 0 0
BH 0 0 0 0 36 14 0 0 0 0

Clest 0 11 5 0 34 0 0 0 0 0

Model 10 (g∗ = 3 or 9)
Proposed 0 0 19 0 0 0 0 0 31 0

CH 0 0 0 0 0 0 0 0 50 0
KL 0 0 43 7 0 0 0 0 0 0

Hart 0 0 0 0 0 0 0 0 20 30
Sil 0 0 50 0 0 0 0 0 0 0

Gap 0 0 50 0 0 0 0 0 0 0
BH 0 0 42 2 1 4 1 0 0 0

Clest 0 0 50 0 0 0 0 0 0 0

Model 11 (g∗ = 4)
Proposed 0 0 0 50 0 0 0 0 0 0

CH 0 0 0 0 0 0 7 2 1 40
KL 0 0 0 49 0 0 1 0 0 0

Hart 0 0 0 0 0 0 12 6 13 19
Sil 0 0 0 50 0 0 0 0 0 0

Gap 9 0 0 38 2 0 0 1 0 0
BH 0 0 0 30 6 2 5 3 4 0

Clest 0 1 45 4 0 0 0 0 0 0
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Table 4.5: Estimated number of clusters (Model 12 ∼ Model 13)

Method Number of clusters
1 2 3 4 5 6 7 8 9 10

Model 12 (g∗ = 2)
Proposed 1 40 4 1 2 1 0 0 1 0

CH 0 41 2 0 2 1 0 1 2 1
KL 0 4 8 3 7 8 3 9 4 4

Hart 0 3 4 4 7 5 4 4 10 9
Sil 0 47 3 0 0 0 0 0 0 0

Gap 5 42 2 1 0 0 0 0 0 0
BH 0 16 12 8 3 9 2 0 0 0

Clest 0 50 0 0 0 0 0 0 0 0

Model 13 (g∗ = 1)
Proposed 50 0 0 0 0 0 0 0 0 0

CH 0 39 9 1 1 0 0 0 0 0
KL 0 9 32 9 0 0 0 0 0 0

Hart 0 0 0 0 0 0 2 5 10 33
Sil 0 10 0 0 0 1 1 4 6 28

Gap 50 0 0 0 0 0 0 0 0 0
BH 0 50 0 0 0 0 0 0 0 0

Clest 48 0 1 0 1 0 0 0 0 0
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4.4 Chapter Summary and Discussions

In this chapter, we have proposed a new estimating method in order to discover the best

number of clusters in a dataset. Not only the compactness that, in the most of previous research

studies, has been used but also the connectivity newly introduced from the cluster k-NN and

k-MN consistency concepts were used to suggest the method working for both convex-shaped

and non-convex-shaped clusters. The proposed method was designed in a framework of meta-

learning through a function that generates synthetic datasets by inserting some amount of

perturbation for the purpose of giving more reliability to the finally estimated number of

clusters. One more advantage of the proposed method is that it is designed to be applicable

with almost any clustering methods. Hence, the proposed method is independent from an

employed clustering algorithm in cluster analysis.

We have examined the proposed method with the other existing approaches throughout

an intensive simulation study based on 13 data-generating models. The models tried to vary

geometry of data used for testing, with consideration of many different types of clustering.

The experimental results seem positive. For the simulated datasets, the proposed approach

performed well across a wide range of models with varying the number of clusters including null

cluster, different numbers of variables, various shapes of clusters, noise objects, noise variables,

and different covariance matrix structures for Gaussian-distributed objects. In more detail, it

showed better performance than the others especially for the non-convex shaped clusters in

Model 3 and 6 with around 70% of the correct estimates, while all of existing approaches was

worse than a chance which is 10% (selecting one out of 10 numbers of clusters in our study).

The proposed method was also robust to some cases having noise objects or noise variables

where some of existing method could not correctly estimate the true number of clusters. In

addition, we showed one particular example tempting two different answers simultaneously

which is Model 10 where the proposed method accurately suggested both numbers as possible

estimates of cluster numbers. It was satisfactory that the method could behave itself like human

eyes’ judgment. Based on the results in this simulation study, we arrived at a conclusion that

the proposed method is a promising tool in order to address an important and challenging
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problem which is to identify the best number of clusters.

However, due to several characteristics of procedures in the proposed method, the method

may have some limitations and weakness. First of all, the proposed method needs a large

amount of computational time according to the large size of clustering problem because of its

meta-learning framework like another resampling based methods and the Gap statistic, since

we need to apply the chosen clustering algorithm to a number of datasets either resampled or

generated and then validate the same number of clustering results. Second, since the proposed

method is a sort of ad hoc approach to estimate the number of clusters although it is built

on reasonable rationales such as the characteristics of compactness and connectivity, synthetic

datasets, and the majority voting scheme, there is no theoretical guarantee that the proposed

method always works for any types of data. One potential example that we can expect where

the proposed method may fail to discover the true number is the dataset of two spirals that will

be shown in the next chapter. If the characteristic of a cluster is a kind of very thin and long as

a line-like cluster is, it may deteriorate the detection capability of the proposed method. Lastly,

in order to operate the proposed method, we need to predetermine three parameters that are

the number of synthetic datasets, the number of nearest neighbors as an input argument of

Populate() function, and another number of nearest neighbors for calculating the connectivity,

and wrong settings of those parameters may result in a poor performance.

Therefore, the following issues may need to be addressed as for the further investigation of

this research. A sensitivity analysis on different settings of parameters of the proposed method

will need to be performed in order to obtain a good range of each. Throughout this analysis

we will be able to suggest what parameter setting are practically reasonable for what types of

dataset. If we can derive some key parts of theoretical bases of the method, it will also fortify

the weakness of the proposed method. However, we may have to make some assumptions

about several things such as distributions of clusters and shapes of clusters. Additionally, an

empirical data analysis based on real datasets from different applications will give us good

examples of an appropriate use of the proposed method.
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CHAPTER 5. CONNECTIVITY-BASED CLUSTERING APPROACH

Measuring cluster quality is useful not only for validating clustering solutions, i.e. iden-

tifying the promising number of clusters but also for developing or improving a clustering

algorithm itself, because it can be used as an objective of a clustering method. For example,

the well-known k-means clustering has the objective of having the optimal ‘compactness’ at

given number of clusters. We have demonstrated how the ‘connectivity’ measure can be valu-

able to the problem of deciding the optimal number of clusters. In this chapter we propose a

new clustering method in which the connectivity measure plays an important role. In order

to incorporate the connectivity into the frame of a clustering algorithm, we developed a new

heuristic approach that attempts to optimize the connectivity objective.

5.1 Optimization Point of View on Clustering

As can be seen in Section 2.1, a clustering problem is generally an optimization problem

and its integer programming formulation is given in Equation 2.15 which is the most typical

form, Equation 2.16 being formulated for k-means clustering, and Equation 2.19 that is the

case of k-medoids clustering. Besides such classical formulations first introduced by Vinod

(1969) and shown in Kaufman and Rousseeuw (1990), people have been trying to interpret the

clustering problem as many different mathematical programming formulations such as linear

programming (Olafsson et al., 2008).

A constrained optimization problem to which most of clustering problems belong consists

of two parts; the objective function part and the second part of one or more constraints. The

inherent nature of clustering that partitions a dataset into several sub-groups toward the max-

imized within-cluster homogeneity and between-cluster heterogeneity formulates the objective
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function part. Based on the meaning of partitioning which corresponds to the second part,

the clustered sub-groups should be non-overlapped in the case of ‘hard’ clustering into which

the most of existing clustering methods fall. The formulation of this requirement conducts

the corresponding constraints in terms of the expressions that one object should be assigned

into no more than one cluster and each cluster should have at least one object. Unfortunately,

due to the addition of those conditions into a clustering problem, the number of constraints

increases with respect to the number of objects and the number of clusters, although its incre-

ment is linear. Moreover, the objective function is also difficult to evaluate directly, because

it usually forms both non-linearity and non-convexity that may have many local optimum so-

lutions in the space of integer. This kind of formulation is generally considered as a difficult

and large-scale optimization problem.

With respect to this constraint issue, there is one more concern that makes a clustering

problem extremely difficult. Suppose that we have a clustering problem where its size is very

small with four objects {1, 2, 3, 4} and two clusters, meaning that we want to cluster those

four objects into 2 sub-groups. All possible solutions are then {(1), (2, 3, 4)}, {(2), (1, 3,

4)}, {(3), (1, 2, 4)}, {(4), (1, 2, 3)}, {(1, 2), (3, 4)}, {(1, 3), (2, 4)}, and {(1, 4), (2, 3)}.

Hence, the number of all solutions to be evaluated is finite and we can obtain the global

optimum solution by assessing all of those partitions. However, obtaining the exact solution

of the problem is theoretically possible, not yet feasible in practice, because the number of

possible solutions increases incredibly with respect to the number of objects and the number

of clusters. Again, assume that we have a dataset consisting of n objects and we wish for

obtaining g partitions. If exhaustive enumeration is used to solve this clustering problem, then

one requires the evaluation of S(n, g) partitions (Anderberg, 1973; Spath, 1980) which is given

by

S(n, g) =
1
g!

 g∑
j=1

(−1)g−j
 g
j

 jn
 (5.1)

Some examples showing the possible number of partitions are given as follows.

S(15, 3) = 2, 375, 101 (5.2)

S(20, 4) = 45, 232, 115, 901 (5.3)
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S(100, 5) = 1068 (5.4)

It is clearly indicated that exhaustive enumeration cannot lead to the required solution for

most practical clustering problems in a reasonable time.

Due to such difficulties mentioned above, approximate heuristic techniques looking for

a compromise or a near optimal solution which performance is reasonable to be accepted

have usually been adopted. As a short comment, the k-means clustering and PAM algorithm

introduced in Section 2.1 also fall into the class of heuristic approaches. Genetic Algorithms

(GA) have widely been employed in the research line of heuristics-based clustering (Murthy and

Chowdhury, 1996; Maulik and Bandyopadhyay, 2000; Garai and Chaudhuri, 2004), because

of its multi-dimensional and stochastic search capability. Hence, the GA-based clustering

approaches have been proposed with an assertion that they could be good alternatives of the

well-known k-means clustering in respect of better reaching to the global optimum solution in a

reasonable computational time. However, it has been found that the GA-based methods could

be inefficient if we fail to make a compromise between two conflicting facets; the maintenance

of population diversity and the optimality guarantee with fewer changes in the bits of the

present best strings as the GA goes nearer to the optimum. It may be difficult to satisfy those,

since we usually cannot reflect the structure of clustering problem into the GA procedures

after encoding the original solution to the chromosome representation. Moreover, none of the

previous studies did consider the connectivity concept that we have shown in Chapter 3 and

4, as their objective to be optimized.

The objective function part in a clustering formulation is also tremendously important, be-

cause the same data can have more than one relevant structure, each one in accordance with a

different cluster criterion. Most of traditional clustering algorithms strive for compact clusters,

a criterion which is usually implemented by keeping intra-cluster homogeneity. They include

algorithms like k-means clustering, average linkage agglomerative clustering, self-organizing

maps (Kohonen, 2001), or model-based clustering (Banfield and Raftery, 1993). The resulting

methods tend to be very effective for convex-shaped, spherically shaped, and/or well-separated

clusters, but they may fail for more complicated cluster structures. In the meantime, clustering
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approaches based on a criterion of a general meaning of connectivity have been received less

attention than those of compactness objective and few algorithms have thus been mentioned

in the literature. Briefly, they employ a more local concept of clustering based on the idea that

neighbored data items should belong to the same cluster. The single linkage agglomerative

hierarchical clustering is the most well-known method implementing the objective function of

connectivity. Methods belonging to this category are well-suited to detect clusters of arbi-

trary shapes; however they can lack robustness when there is little spatial separation between

clusters.

In this chapter, we attempt to formulate a clustering problem pursuing the connectivity

objective mentioned in Section 3.2 and to develop a new heuristic approach for solving the

problem with consideration of the constraints stated above. Detailed description of the pro-

posed clustering approach will be mentioned in the following section that is also followed by

the section of numerical experiments.

5.2 Proposed Clustering Algorithm

The proposed method falls into the category of the ‘hard’ clustering which means that

resulting clusters should satisfy the meaning of constraints in Equation 2.15 that generates

non-overlapping clusters. Hence, each object should not belong to more than one cluster and

each cluster should have at least one object. Based on these constraints of non-overlapping,

what we attempt to optimize is the connectivity described in Equation 3.3. This quantity

should be minimized or reach to the value of zero ideally. The connectivity measure varies

at different number of nearest neighbors. It can easily reach to the value of zero with a large

number of clusters at a very small number of nearest neighbors, because it is not difficult

to satisfy the cluster k-NN and k-MN consistencies. On the other hand, a large number of

nearest neighbors make the quantity of connectivity relatively large, and thus it will be very

difficult or may be impossible to reach to either quite minimized or zero of the connectivity. It

is very likely that a small number of clusters are produced at a given value of k which is large.

Therefore, we need to wisely choose the number of nearest neighbors, or it may be a good
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way to explore the resulting clusters at sequentially increasing values of k. In our proposed

algorithm, we choose the latter strategy for obtaining as good clustering results as possible.

This issue will be addressed later.

In order to cluster objects with the objective function and constraints mentioned above,

we propose a greedy heuristic approach, named as CNCLUST (connectivity-based clustering),

and its algorithm is described as below. Following notation will be needed to present it. Note

that this method starts with k = 1.

Notation

• n : total number of objects in the given dataset

• A : a set containing all objects, i.e. A = {1, 2, . . . , n}

• m : number of resulting clusters by the algorithm

• k : number of nearest neighbors

• g∗ : user-defined number of clusters

• d(i, j) : distance between object i and j

• σi(k) : a set of k nearest neighbors of object i

Algorithm CNCLUST

1. Initial partition

(a) Set Ω = ∅, P = ∅, and h = 1.

(b) Find an object î such that

î = argmin
i∈A\Ω

∑
j∈σi(k)

d(i, j).

(c) Construct a cluster C (̂i) = σî(k), and this cluster can be divided into

two subsets C1(̂i) and C2(̂i) where

C1(̂i) =
{
j|σj(k) ⊆ C (̂i)

}
and C2(̂i) = C (̂i) \ C1(̂i).

(d) For an object j̃ ∈ C2(̂i), add its nearest neighbors into C (̂i), i.e.

C (̂i)← C (̂i) ∪ σj̃(k)

until C2(̂i) = ∅.
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(e) Update the current Ω by adding the objects in C (̂i), i.e. Ω← Ω ∪C (̂i).

(f) Let C (̂i) denote Ch, and also let Ch be an element of P , i.e. P = {Ch}.
(g) If A \ Ω = ∅, then stop. Otherwise, h ← h + 1 and then move to Step

1(b).

2. Merge

(a) In the resulting partition P = {Ch} (from Step 1.), h = 1, 2, . . . ,m and

m > g∗, select a pair of clusters Cŝ and Ct̂ such that(
ŝ, t̂
)

= argmax
(s,t)∈{1,2,...,m}

ηst

where

ηst =
∑
i∈Cs

∑
j∈Ct∧j∈σi(k)

1
d(i, j)

, |Cs| ≤ |Ct|.

(b) Merge Cŝ into Ct̂, and then m← m− 1.

3. Check stopping criteria

(a) If m = g∗, then stop. Otherwise, check if ηst = 0, ∀(s, t) ∈ {1, 2, . . . ,m}.

If so, k ← k + 1 and then move to Step 1(a). If ηst 6= 0, ∀(s, t) ∈

{1, 2, . . . ,m}, then move to Step 2(a).

Step 1, which initially partitions the given objects at a given number of k, constructs groups

of objects, namely called as knn-closed sets. When constructing a knn-closed set, we start with

the object î chosen in Step 1(b) for the purpose of reducing the amount of connectivity as much

as possible in earlier stages of algorithm. This step considers a concept of local compactness

in data. Step 1(d) is a sort of chain operator that attempts to satisfy the cluster k-NN and k-

MN consistency, that is, to minimize our objective function. Hence, successively grouping the

neighbor objects of already grouped objects tries to secure as many consistencies of objects as

possible. If there is neighbor-distinction between objects, this step stops grouping objects and

results in one knn-closed set. We repeat this procedure until all objects in the given dataset

are exhausted. Since we consider the constraints of non-overlapping clusters, an object, which

belongs to one of constructed sets in earlier steps, cannot be grouped into other closed sets in

later steps.
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When grouping two clusters together in Step 2, we also try to minimize our objective

function as quickly as possible. Therefore, Step 2(a) selects a pair of clusters by measuring

the largest amount of violation of cluster k-NN and k-MN consistencies between clusters. We

first define a major cluster Ct and a minor cluster Cs by the inequality of |Cs| ≤ |Ct|, and

then compute ηst. Its magnitude is relative to both the number of pairs of objects, where one

object is in the minor cluster and the other one is its neighbor object in the major cluster, and

the distance between those. Since one step merge reduces the number of clusters by one, we

can control the number of clusters in Step 2. This merge step is stopped by either m = g∗ or

ηst = 0. The former means we have arrived at the number of clusters that we defined, while the

latter indicates that further merging steps are impossible. Note that ηst = 0 sometimes means

the zero objective function value, but sometimes does not. If the further merge is impossible

before reaching to the pre-defined the number of clusters g∗, we repeat Step 1 and 2 with an

increased number of k by 1.

There are two possible strategies with regard to the resulting number of clusters. The

first one is to set the number of clusters ahead as we do in other partitioning methods. We

begin the proposed algorithm with k = 1 and repeat Step 1 and 2 until we reach to g∗. Since

another g∗ could appear in the subsequent procedures, it is recommended to go further with

a larger k until the algorithm creates one single cluster. Then, we can see which clustering

among several results, where all results have g∗ clusters, works better than the others for our

application. The second way is to obtain the m number of clusters when the merge step is

stopped by ηst = 0. It is very likely that a small number of k on a large number of n results

in many small clusters by this strategy. Therefore, although the connectivity is either zero or

minimized at the given k, if the resulting number of clusters is (much) greater than expected

from the given dataset, we need to repeat Step 1 and 2 with larger k’s. What we believe from

this strategy is that if there exists a clear structure of clusters then we perhaps can reach to

zero or possible minimum connectivity at consecutive k’s with the same number of clusters.

This strategy is reasonable in respect that cluster analysis is basically an exploratory pattern

analysis. We explain this using the following example. It also illustrates how the proposed
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algorithm works. As can be seen in Figure 5.1, this example has the structure of three clusters

(g∗ = 3) with 30 objects where each cluster contains 10 objects.

(a) 3nn-closed sets (b) 1st merge (c) 2nd merge

(d) 3rd merge (e) 4th merge (f) 5th merge–stop

Figure 5.1: Illustration of CNCLUST through a synthetic example

This example starts with k = 3 and the resulting eight 3nn-closed sets are merged sequen-

tially as the merge step goes. Each object in the figure is marked by a number that indicates its

cluster membership. This number also shows the sequence of grouping. When we started with

k = 2, the resulting number of clusters was 4 at zero connectivity meaning both that no more

merge was allowed and that all objects satisfied the two consistencies. Figure 5.1f shows the

first clustering result of g∗ = 3. When the algorithm stopped, we arrived at zero connectivity

and obtained the correct clustering. We resulted in the same clustering by {k = 4, 2nd merge},

{k = 5, no merge}, {k = 6,no merge}, . . . , and {k = 9, no merge}. At k = 10, Step 1 created

2 clusters, and a single cluster was generated by only Step 1 with k = 11.

As shown in the description of the algorithm and the above example, the proposed method

generates a series of cluster hierarchies and each hierarchy corresponds to each number of
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nearest neighbors which is k. The example in Figure 5.1 shows an ideal case that several ends

of cluster hierarchies met the pre-defined number of clusters g∗. However, with regard to the

2nd strategy for the resulting number of clusters, we do not have to define the g∗ ahead, because

it is in fact unknown in cluster analysis. Suppose that we do not know the true number of

clusters in the above example. Since many of k’s resulted in 3 clusters with the same structure

of clusters at the end of each hierarchy, we are able to choose this cluster result with high

reliability.

Again, the proposed method is flexible in respect that we can either predefine the number

of clusters or come up with one or several promising number of clusters. Since cluster analysis

is an exploratory pattern discovery method, we may want to go with the 2nd way; in sum,

generate several cluster hierarchies, obtain several cluster results from the ends of hierarchies,

and select a good clustering from those that has a reasonable number of clusters and provides

a suitable explorability into the data.

5.3 Numerical Experiments

The goal of this section is to illustrate the proposed clustering approach on several simulated

examples and to compare it to five existing clustering methods mentioned in Section 2.1 that

are single linkage hierarchical clustering, complete linkage hierarchical clustering, k-means

clustering, Partitioning Around Medoids (PAM), and model-based approach.

5.3.1 Clustering Methods

CNCLUST: The proposed clustering method. This method will group the given datasets

by following its algorithm described in Section 5.2. The resulting cluster numbers will be

determined as the algorithm suggests, rather than the predefined number of clusters, that

is, the 2nd strategy. This method will therefore propose one or more of the most promising

clustering results in our experiments.

Single linkage method: It is expected that this clustering method shows the most similar

behaviors with CNCLUST, since it basically constructs the hierarchy of clusters by neighboring
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objects in an agglomerative manner. We would like to see the difference between this method

and the proposed method on our simulated datasets in respect that both of them are based on

the nearest neighbor principle.

Complete linkage method: Another hierarchical approach which clustering behavior is

quite different from the single linkage was adopted for the purpose of comparison. Since this

method uses the largest distance between objects in two different clusters, it is called Furthest

Neighbor approach. It is likely that CNCLUST may show its behavior lying between this

method and single linkage.

k-means clustering: One of the most often used clustering methods was included in our

experiments. For the purpose of avoiding poor clustering results due to wrong selection of

initial centroids in its algorithm, we perform a preliminary clustering phase on a random 10%

subsample of the given dataset and then choose the initial centroids which are the mean values

of clusters.

Partitioning Around Medoids (PAM): Since k-medoids clustering can be distinguished

from k-means clustering by the fact that it selects data objects as centers and is thus more

robust to outliers, PAM was selected as a k-medoids clustering approach. For this clustering

algorithm, we used the function ‘pam’ in the package of cluster in R version 2.7.1 (Maechler

et al., 2005).

Model-based clustering (Mclust): This method is distinctive from the other methods in

our experiments in respect that it is a parametric clustering approach with Gaussian mixtures,

so it clusters objects based on estimated densities rather than distances between objects. The

function ‘Mclust’ in the package of mclust in R version 2.7.1 was employed to cluster objects

(Fraley and Raftery, 2006).

Squared Euclidean distance was used as a distance measure between two objects for all

clustering methods used in our experiments except the model-based clustering. So, we used a

prepared dissimilarity matrix which elements are the squared Euclidean distances as the input

argument of the ‘pam’ function.
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5.3.2 Simulated Datasets

All simulated datasets are two-dimensional, since we believe that they are easy to under-

stand their own special features, and thus make us convenient to recognize the results and

interpret the resulting clusters. Moreover, it is superior to visually show the differences be-

tween the results of clustering from different approaches. Eventually, we considered 11 datasets

and their short descriptions are provided as below. Illustration of each dataset can be seen at

its corresponding result in Section 5.3.3.

Data 1: This dataset consists of four Gaussian-distributed clusters and it was generated

from the Gaussian distributions with an identical covariance matrix, Σ = 2.5I2. Each cluster

contains 80 objects centered atµ1 =

 0

0

 , µ2 =

 0

10

 , µ3 =

 10

0

 , µ4 =

 10

10

 .
We prepared this dataset as the most formal structure of clusters that may be easy for most

of the clustering algorithms to figure out the true clustering.

Data 2: This dataset also contains Gaussian-distributed clusters. In addition to the three

major clusters, we added several noise objects to make this dataset different from Data 1. This

dataset was generated from Model 4 described in Section 4.3.1, but it is different in respect that

each cluster has 50 objects and the number of noise objects is also 50. It may be difficult for

neighboring-based approaches such as single linkage to discover the true structure of clusters

due to noise objects.

Data 3: Two paralleled and elongated clusters are included in this dataset. The layered

part of two elongated clusters may obfuscate some of clustering algorithms to cluster the objects

correctly. The procedure for generating this dataset is very similar to Model 2 in Section 4.3.1.

Let x1 take 200 equal spaced values from -2 to 2 and set x2 = 0 for all the resulting 201 objects.

Gaussian noise with standard deviation 0.1 is then added to each variable. The second cluster

is also generated in the same way except the setting of x2 = 1. In order to shift each cluster to

opposite directions, we add -1 to the first variable of the first cluster and 1 to the first variable

of the second cluster.
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Data 4: It is the same to Data 1 and 2 that we generate clusters from a set of Gaussian

distributions. The difference, however, comes from that we consider various shapes, volumes,

and orientations of Gaussian distribution for each cluster. This dataset consists of five clusters

generated from the following Gaussian distributions. For each cluster Ci, i = 1, 2, . . . , 5,

|C1| = 120, |C2| = |C3| = |C4| = |C5| = 70,µ1 =

 0

0

 , µ2 =

−5

−4

 , µ3 =

 5

4

 , µ4 =

−5

4

µ5 =

 5

−4

 ,Σ1 =

 0.2 0

0 10

 ,Σ2 = Σ3 =

 0.8 0

0 0.8

 ,Σ4 =

 0.8 0.6

0.6 0.8

 ,Σ5 =

 0.8 −0.6

−0.6 0.8

 .
Data 5: This data is called ‘Wreath data’ because of its forming shape. It consists of 1000

objects generated from a fourteen-component Gaussian mixture where the covariance matrices

of the components are of equal size and shape, but differ in orientation. We obtained this

dataset from the mclust package in R software (Fraley and Raftery, 2006).

Data 6: A special structure of clusters is shown in this dataset which contains two spirals

in two dimensions. Set r1 = r2 = t, with t taking 200 equal spaced values from 0.5 to 4.5. Also

let θ1 take the 200 equal spaced values from 0 to 4π, while θ2 takes another 200 equal spaced

values from π to 5π. The subscript i (i = 1, 2) indicates the cluster i. In order to convert the

polar coordinates into Cartesian coordinates, we used the equations that are x1 = r cos θ and

x2 = r sin θ. It is expected that only the approaches of nearest neighboring will work for this

dataset.

Data 7: This dataset includes three nested rings in two dimensions. From Model 3 in

Section 4.3.1, we obtained this dataset. Similar to Data 6, non-neighboring methods may not

perform well for this dataset.

Data 8: The shape of this dataset does look like a smile. Two clusters forming eyes were

generated from Gaussian distributions, and the other cluster forming a mouth is a part of a

generated circle. The circle can be generated in the same way of generating a ring in Model 3

in Section 4.3.1 or Data 7. Each eye has 50 objects and the mouth consists of 100 objects.

Data 9: Five arbitrarily shaped clusters are included in this dataset. We generated the

coordinates of each object manually, not from a model. Total number of objects in this dataset
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is 200.

Data 10: Each spherically shaped cluster, Ci, was generated from the following Gaussian

distribution,

|C1| = |C2| = |C3| = |C4| = 80,µ1 =

 0

0

 , µ2 =

−5

−4

 , µ3 =

 5

4

 , µ4 =

−5

4

µ5 =

 5

−4

 ,
Σ1 = Σ2 = Σ3 = Σ4 = I2,

and we then connected those so they form a rectangular figure. The x1 coordinates of objects

forming two horizontal lines and the x2 coordinates of objects forming two vertical lines were

generated from uniform distributions, and the x2 coordinates of objects forming two horizontal

lines and the x1 coordinates of objects forming two vertical lines were generated from Gaussian

distributions with a very small variance. Each line consists of 10 objects. Similar to Data 2,

this dataset may obfuscate nearest-neighboring-based approaches such as single linkage method

because of the connecting lines.

Data 11: This dataset is a simple combination of Data 1 and Data 7. Total number of

cluster is, therefore, 7, including 4 Gaussian distributed clusters and 3 nested rings. Each

Gaussian distributed cluster has 50 objects, and the number of objects for 3 rings is the same

as in Data 7. We constructed this dataset for the purpose of having both spherically and

non-spherically shaped clusters in one dataset.

5.3.3 Results

All clustering results will be shown in 2D plots where each object is represented by a num-

ber that indicates the corresponding cluster membership. Therefore, we can easily recognize

each clustering result. They are provided in Figure 5.2 ∼ Figure 5.12. The below descriptions

highlights the results in order to help us understand the figures.

Data 1: Four Gaussian-distributed clusters

Complete linkage, k-means clustering, PAM, and Model-based approach showed a good
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clustering result, whereas single linkage method grouped two lower clusters into one and made

a singleton cluster which is cluster 3. The result of single linkage shows its well-known drawback

that this method is very sensitive to outliers because of its one-nearest-neighboring property.

Although we increase the number of clusters to 5 or 6 based on the cluster hierarchy of single

linkage, it is likely that another singleton clusters may be created. The 4th hierarchy of CN-

CLUST exactly found the four clusters from this dataset. As a reference, we also reported the

3rd and 5th hierarchy. The 3rd hierarchy of clusters generated 14 clusters after 51st merge,

and it is shown that this result also figured out three major clusters.

Data 2: Three clusters with noise objects

k-means clustering, PAM, and model-based approach performed well as shown in Figure

5.3, although their results are a bit different each other. Complete linkage method grouped

two major clusters together, and single linkage grouped all three clusters into one group and

generated 2 very small clusters. However, although CNCLUST is basically built on a linkage

framework, its results from the 3rd and 4th hierarchy have a good quality. It appears that the

proposed method is more robust to noise objects than the two linkage methods on this dataset.

Data 3: Two paralleled and elongated clusters

CNCLUST, single linkage, and model-based clustering found two clusters correctly, while

the other methods were confused on grouping objects in the layered part of two clusters. It is

noticeable that the model-based approach estimated two narrow paralleled Gaussian distribu-

tions, so it clustered the objects correctly. As can be seen in the connectivity plot, the 6th,

7th, . . ., 10th hierarchy identically resulted in the same two clusters.

Data 4: Five clusters with different shape, volume, and orientaion

Most of clustering algorithms failed to discover the true structure of clusters because of the

long and thin cluster which is located at the center of the space. Single linkage was confused

on distinguishing the cluster at the left and bottom from the middle cluster due to three ob-
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jects at the bottom. Complete linkage, k-means, and PAM failed in a similar way due to the

centered cluster. However, CNCLUST and model-based approach was completely successful

to distinguish all five clusters from each other.

Data 5: Wreath data (14 clusters)

Due to the large number of objects, it is difficult to read the results directly from the

figures. Alternatively, Table 5.1 shows the performances of clustering methods in terms of

Adjusted Rand Index. See the table. In this case, model-based clustering performed best.

Complete linkage and PAM, which are followed by k-means clustering, is comparable with

model-based clustering. Although CNCLUST showed the worst performance, the clustering

was not completely wrong. At the left side in the last plot of CNCLUST, it is shown that this

method grouped four clusters into two clusters labeled as cluster 11 and 5.

Data 6: Two spirals

All clustering methods, except single linkage and CNCLUST, completely failed to reveal

the true clusters structure form this dataset due to its very special distribution. Complete

linkage, k-means, PAM, and model-based clustering cut the whole data into halves, whereas

single linkage and CNCLUST figured out two spirals formed by linked objects. The con-

nectivity plot shows that CNCLUST sequentially merged objects and stopped merging at 4

clusters when we set the number of neighbors to 1. With settings of k = 2 or k = 3, this method

figured out 2 clusters only by constructing the knn-closed sets, which is Step 1 in its algorithm.

Data 7: Three rings

Similar to the results on Data 6, this dataset was also difficult for four clustering methods,

which are complete linkage, k-means, PAM, and model-based clustering, to figure out three

rings. Nearest-neighboring-based approaches, which are single linkage and CNCLUST, per-

formed well as shown in Figure 5.8.
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Data 8: Smile data (3 clusters)

The results from complete linkage, k-means clustering, and PAM are very similar each

other. It seems that they tried to group objects into a left, middle, and right cluster. We

can notice that model-based approach tried to find three Gaussian distributions, which are the

biggest left one, small right-upper one, and long right-lower one. Single linkage and CNCLUST

found the correct clusters from this dataset.

Data 9: Hand-made data (5 clusters)

Complete linkage, k-means clustering, and PAM resulted in a very similar and poor cluster-

ing, whereas single linkage and CNCLUST performed perfectly. Model-based clustering also

grouped well although it was not ideal. It seems that although the five clusters are shaped

arbitrarily, the separation between clusters is spacious enough to cluster objects correctly by

a good mixture of five Gaussian distributions in the case of model-based.

Data 10: Four connected clusters

Single linkage divided the objects into two large clusters and two singleton clusters, while

the other methods, which are complete linkage, k-means, PAM, and model-based clustering,

correctly found the four major clusters. CNCLUST found the true clusters structure from its

4th hierarchy. The four connecting lines were unable to confuse the proposed method in this

case, whereas the single linkage was obfuscated by them.

Data 11: Data 1 & Data 7 (7 clusters)

Single linkage grouped two inner rings together and generated one singleton cluster that

is cluster 2, whereas CNCLUST correctly found all three rings and four spherically shaped

clusters from its 7th cluster hierarchy. The results from 8th, 9th, and 10th hierarchy were

same as shown in Figure 5.12. The other methods completely failed to discover the true 7

clusters. It is interesting to see that k-means clustering grouped the four left-upper clusters

into one cluster due to the three rings located at the left-lower side, although each of them is
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spherically distributed.

Above clustering results shown in the figures are also summarized in terms of Adjusted Rand

Index (ARI), computed by Equation 2.29, in Table 5.1. Noise objects in Data 2 and the objects

forming lines in Data 10 were excluded for calculating ARI. In general, CNCLUST performed

well over the range of 11 simulated datasets, whereas some of other methods performed very

poorly in some special cases. It was revealed from this simulation study that the proposed

method not only grouped well any arbitrarily shaped clusters as single linkage method did,

but also showed more robustness to noise objects than the single linkage.
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(a) Connectivity plot

(b) CNCLUST (14 clusters);
k = 3, after 51st merge

(c) CNCLUST (4 clusters);
k = 4, after 18th merge

(d) CNCLUST (2 clusters);
k = 5, after 9th merge

(e) Single (g = 4) (f) Complete (g = 4) (g) k-means (g = 4)

(h) PAM (g = 4) (i) Model-based (g = 4)

Figure 5.2: Clustering results on Data 1
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(a) Connectivity plot

(b) CNCLUST (21 clusters);
k = 2, after 54th merge

(c) CNCLUST (4 clusters);
k = 3, after 28th merge

(d) CNCLUST (3 clusters);
k = 4, after 18th merge

(e) Single (g = 3) (f) Complete (g = 3) (g) k-means (g = 3)

(h) PAM (g = 3) (i) Model-based (g = 3)

Figure 5.3: Clustering results on Data 2
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(a) Connectivity plot

(b) CNCLUST (5 clusters);
k = 4, after 36th merge

(c) CNCLUST (3 clusters);
k = 5, after 15th merge

(d) CNCLUST (2 clusters);
k = 6, after 8th merge

(e) Single (g = 2) (f) Complete (g = 2) (g) k-means (g = 2)

(h) PAM (g = 2) (i) Model-based (g = 2)

Figure 5.4: Clustering results on Data 3
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(a) Connectivity plot

(b) CNCLUST (13 clusters);
k = 3, after 58th merge

(c) CNCLUST (5 clusters);
k = 4, after 25th merge

(d) CNCLUST (5 clusters);
k = 5, after 16th merge

(e) Single (g = 5) (f) Complete (g = 5) (g) k-means (g = 5)

(h) PAM (g = 5) (i) Model-based (g = 5)

Figure 5.5: Clustering results on Data 4
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(a) Connectivity plot

(b) CNCLUST (15 clusters);
k = 4, after 66th merge

(c) CNCLUST (12 clusters);
k = 5, after 40th merge

(d) CNCLUST (12 clusters);
k = 6, after 23th merge

(e) Single (g = 14) (f) Complete (g = 14) (g) k-means (g = 14)

(h) PAM (g = 14) (i) Model-based (g = 14)

Figure 5.6: Clustering results on Data 5
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(a) Connectivity plot

(b) CNCLUST (4 clusters);
k = 1, after 396th merge

(c) CNCLUST (2 clusters);
k = 2, no merge

(d) Single (g = 2) (e) Complete (g = 2) (f) k-means (g = 2)

(g) PAM (g = 2) (h) Model-based (g = 2)

Figure 5.7: Clustering results on Data 6
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(a) Connectivity plot

(b) CNCLUST (7 clusters);
k = 6, after 8th merge

(c) CNCLUST (6 clusters);
k = 7, after 2nd merge

(d) CNCLUST (3 clusters);
k = 8, after 1st merge

(e) Single (g = 3) (f) Complete (g = 3) (g) k-means (g = 3)

(h) PAM (g = 3) (i) Model-based (g = 3)

Figure 5.8: Clustering results on Data 7
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(a) Connectivity plot

(b) CNCLUST (4 clusters);
k = 4, after 9th merge

(c) CNCLUST (3 clusters);
k = 5, after 6th merge

(d) Single (g = 3) (e) Complete (g = 3) (f) k-means (g = 3)

(g) PAM (g = 3) (h) Model-based (g = 3)

Figure 5.9: Clustering results on Data 8



www.manaraa.com

87

(a) Connectivity plot

(b) CNCLUST (22 clusters);
k = 2, after 29th merge

(c) CNCLUST (7 clusters);
k = 3, after 8th merge

(d) CNCLUST (5 clusters);
k = 4, after 1st merge

(e) Single (g = 5) (f) Complete (g = 5) (g) k-means (g = 5)

(h) PAM (g = 5) (i) Model-based (g = 5)

Figure 5.10: Clustering results on Data 9
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(a) Connectivity plot

(b) CNCLUST (11 clusters);
k = 3, after 43rd merge

(c) CNCLUST (4 clusters);
k = 4, after 19th merge

(d) CNCLUST (2 clusters);
k = 5, after 9th merge

(e) Single (g = 4) (f) Complete (g = 4) (g) k-means (g = 4)

(h) PAM (g = 4) (i) Model-based (g = 4)

Figure 5.11: Clustering results on Data 10
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(a) Connectivity plot

(b) CNCLUST (13 clusters);
k = 5, after 23rd merge

(c) CNCLUST (8 clusters);
k = 6, after 18th merge

(d) CNCLUST (7 clusters);
k = 7, after 9th merge

(e) Single (g = 7) (f) Complete (g = 7) (g) k-means (g = 7)

(h) PAM (g = 7) (i) Model-based (g = 7)

Figure 5.12: Clustering results on Data 11



www.manaraa.com

90

T
ab

le
5.

1:
C

lu
st

er
in

g
re

su
lt

s
in

te
rm

s
of

A
dj

us
te

d
R

an
d

In
de

x

C
N

C
L

U
ST

Si
ng

le
C

om
pl

et
e

k
-m

ea
ns

PA
M

M
od

el

g
∗

g
1

A
dj

.
R

an
d

g
2

A
dj

.
R

an
d

g
3

A
dj

.
R

an
d

A
dj

.
R

an
d

D
at

a
1

4
14

0.
67

05
4

0.
98

32
2

-0
.1

25
2

0.
68

87
0.

98
32

0.
98

32
0.

99
16

0.
98

32

D
at

a
2

3
21

-0
.1

81
9

4
1.

00
00

3
1.

00
00

N
/A

0.
42

33
1.

00
00

0.
97

99
1.

00
00

D
at

a
3

2
5

0.
42

34
3

0.
75

44
2

1.
00

00
1.

00
00

0.
39

75
0.

30
88

0.
33

72
1.

00
00

D
at

a
4

5
13

0.
63

06
5

1.
00

00
5

1.
00

00
0.

72
67

0.
72

80
0.

83
72

0.
86

19
1.

00
00

D
at

a
5

14
15

0.
86

65
12

0.
88

39
12

0.
88

39
0.

93
26

0.
98

15
0.

91
11

0.
99

79
1.

00
00

D
at

a
6

2
4

0.
98

00
2

1.
00

00
N

/A
N

/A
1.

00
00

0.
00

25
-0

.0
02

5
-0

.0
02

5
-0

.0
02

5

D
at

a
7

3
7

0.
93

21
6

0.
82

68
3

1.
00

00
1.

00
00

0.
01

04
-0

.0
49

4
-0

.0
49

5
-0

.4
13

1

D
at

a
8

3
4

0.
96

25
3

1.
00

00
N

/A
N

/A
1.

00
00

0.
31

46
0.

31
90

0.
33

84
0.

47
61

D
at

a
9

5
22

-0
.0

65
6

7
0.

88
67

5
1.

00
00

1.
00

00
0.

75
56

0.
75

88
0.

76
37

0.
87

56

D
at

a
10

4
11

0.
78

03
4

0.
99

16
2

-0
.1

25
2

0.
37

88
1.

00
00

1.
00

00
1.

00
00

1.
00

00

D
at

a
11

7
13

0.
34

49
8

0.
98

16
7

1.
00

00
0.

84
01

-0
.0

14
9

-0
.0

91
5

0.
03

04
0.

29
44



www.manaraa.com

91

5.4 Chapter Summary and Discussions

A new linkage-like clustering approach, namely CNCLUST, was proposed in this chapter.

We employed a new measurement of cluster quality, which is the connectivity introduced in

Chapter 3, as our objective function. In order to minimize this quantity we developed a

greedy heuristic that reduces the amount of connectivity, which is directly determined when

the number of nearest neighbors is given, as quickly as the algorithm goes. The method first

constructs the nearest-neighbor-closed sets, and then sequentially merges two selected sets

(clusters) in the way that this merge can reduce the possible largest amount of connectivity

at each merge step. Since the structure of nearest neighbors of objects and the connectivity

objective value vary at different number of nearest neighbors k, the method starts from k = 1

and patiently repeats the same steps, which are Step 1 and Step 2, with increment of k, until

all objects in data are clustered together. Because of such a nature of the proposed method,

it generates a series of cluster hierarchies where earlier hierarchies need more merge steps to

reach the minimum connectivity while later hierarchies quickly stops within few merge steps.

Therefore, the method tends to create many clusters in earlier hierarchies and few clusters

in later hierarchies. Among those clustering results, we can select a good one that has a

reasonable number of clusters, that is identically discovered by several k’s, and that provides

an interesting interpretation of data from the created cluster patterns. The proposed method is

flexible in respect that we can also predefine the number of clusters, similar to the partitioning

methods such as k-means.

Based on 11 two-dimensional datasets that were artificially generated, we examined the

proposed method with 5 existing clustering approaches. We tried to design the 11 datasets

with consideration of various shapes of clusters, number of clusters, and robustness to noise

objects. It has been observed that CNCLUST in general performed well over the range of

11 simulated datasets, whereas some of other methods performed very poorly in some special

cases.

In respect that the proposed method constructs clustering by connecting nearest neighbors,

it is similar to the single linkage method. However, the major difference between these two
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methods is that the proposed method first considers local compactness when forming knn-

closed sets and then attempts to realize global connectivity of objects, whereas single linkage

only looks for the closest distance between objects. Moreover, since the proposed method tries

to investigate a given dataset with different neighboring scheme, it examines various clustering

hierarchies and thus may result in the best possible clustering solution in data that single

linkage could neglect. Such differences sometimes give the proposed method more robustness

than the single linkage, and it is shown in our experiments of Data 1, Data 2, and Data 10.

One of the known drawbacks of CNCLUST is that since it does not create one cluster

hierarchy but come up with a series of hierarchies, it needs more computational efforts. A

large number of objects may threaten the proposed method with this point. One possible

strategy that we suggest to deal with such a problem is to start with a big enough number

of k so that we do not waste our efforts to investigate some meaningless cluster structures.

However, more rigorous approaches or modification of the algorithm will be needed.
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CHAPTER 6. APPLICATION TO REAL DATA–FOODBORNE

DISEASE OUTBREAKS

In this chapter we show an application of the proposed clustering method to a real dataset

that contains information about foodborne disease outbreaks. This chapter consists of the

following sections; an introductory section for briefly mentioning about the background of this

application, a preliminary for describing the dataset and employed clustering methods, the

association rule mining section, and the last section that shows the summarized results.

6.1 Background

Food safety is in fact very important part of public health, and although several advanced

surveillance and monitoring systems exist in developed countries, outbreaks of foodborne dis-

eases continue to be commonplace. Such foodborne diseases are caused by consumption of

contaminated foods or beverages. Hence, an outbreak of foodborne illness occurs when a

group of people consume the same contaminated food, and two or more of them come down

with the same illness. The Center for Disease Control and Prevention (CDC) estimates that

foodborne diseases cause 76 million illnesses, 325,000 hospitalizations, and around 5,000 deaths

in the United States every year.

In most states, the diagnosed cases of certain serious infections are reported to the health de-

partment that also reports to CDC through the National Outbreak Reporting System (NORS).

The reported data is investigated by CDC to obtain information regarding the role of food in

the outbreaks. The surveillance of foodborne disease outbreaks can establish prevention and

control measures in the food industry by identification of critical control points by the public

health officials. The investigation of outbreaks also provides critical means for identifying new
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and emerging pathogens, as well as maintains awareness about ongoing problems. Therefore,

foodborne outbreak investigations made in a timely manner can lead us to rapid identification

of corresponding etiologies and thus make us to take appropriate actions for prevention and

control of diseases.

Although it is an important issue to come up with a methodology for identification of pat-

terns of outbreaks, it has not been yet investigated through data mining techniques; nonetheless

they have been successfully applied to many other areas. We therefore perform a cluster anal-

ysis for the purpose of extracting out previous unknown but interesting patterns that connect

specific types of foodborne diseases outbreaks with associated foods and consumption loca-

tions. Five most common disease causing etiologies will be under our consideration, and they

are namely salmonella enteritidis, salmonella typhimurium, e. coli, norovirus, and scombroid

toxin. In order to improve our understanding of the resulting clusters, we also apply another

data mining method, which is Association Rule Mining, to the same dataset.

6.2 Data Preparation and Clustering Methods

The data for this study was obtained from the Outbreak Surveillance Data from the CDC for

the year 2006 (http://www.cdc.gov/). All the data was collected in a text form electronically

through the Electronic Foodborne Outbreak Reporting System (EFORS) and all etiologies

were as reported by the states. The raw Outbreak Surveillance Data was preprocessed in

order to set up a clustering problem by converting a single text word into a binary variable.

Hence, a text description of outbreak having several relative words was converted into a binary

string, where 1 indicates that the reported record has the corresponding word and 0 says it

does not. We finally acquired a flat data matrix consisting of 1’s and 0’s. In addition to these

binary variables we have one more nominal variable which name is ‘confirmed etiology’, but

this variable was not used for clustering. Total number of instances in this dataset is 1,167 and

total number of variables is 107, where the variables are 106 binary variables and 1 nominal

variable. All variable names are described in Appendix B with the zero-one distribution of each

variable. The description of the nominal variable is also given in Appendix B. Note that the



www.manaraa.com

95

etiologies in which we are interested are, again, salmonella enteritidis, salmonella typhimurium,

e. coli, norovirus, and scombroid toxin.

Let X = (xij) denote our binary dataset which is available for clustering. In order to

cluster instances accordingly, we first need to define a distance measure between two instances.

When defining the distance measure, we also need to consider the variation of dataset. We

therefore counted total number of 1’s in this dataset and found that the given dataset used for

clustering is extremely sparse. Total number of 1’s is 1,528, and the sparseness of the dataset

is thus 98.76% (= 1 − 1,528
1,167×106). With consideration of these we define the distance between

instance xa and xb as below:

d(xa, xb) =
1

1 +
∑
j xaj · xbj

. (6.1)

Hence, the distance in Equation 6.1 does not take account into conjoint absences, i.e. 0’s, and

it lies in the range of 0 to 1.

Table 6.1 and Table 6.2 show other descriptions of the dataset. As shown in Table 6.1, most

of instances have 1 or 2 one’s and only 62 instances among 1,167 have more than 3 one’s. Due

to this extreme sparseness of dataset, many of pairs of instances either have only single one in

common or do not have any ones in common. Therefore, we needed to modify our clustering

method in order to make it suitable to this dataset.

Table 6.1: Distribution of the dataset

Number of ones Number of instances

0 104

1 681

2 320

3 44

4 16

5 1

6 1

Total 1,167
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Table 6.2: Number of pairs of instances by ones in common

Ones in common (distance) Number of pairs

0 (1.000) 488,689

1 (0.500) 190,500

2 (0.333) 1,161

3 (0.250) 10

4 (0.200) 1

Total 608,361

First, we did not cluster objects together if the distance between those is equal to or greater

than 0.5, because grouping such objects does not give us any meaningful pattern. As we can

infer from Appendix B, most of pairs have a one in common at the variable of ‘restaurant/deli’.

Second, we used only Step 1 of the proposed method, that is, we did not apply the merge step.

In Step 1, we in fact stop the neighboring objects by not the number of neighbors which is

k but the distance which is equal to or greater than 0.5. Hence, for some objects j̃ ∈ C2(̂i)

in Step 1(d) of the algorithm, we do not add all of its k neighbors but some of those having

the distance (< 0.5), to C (̂i). The stopping criterion of forming closed-sets, which is ‘until

C2(̂i) = ∅’, is the same. Again, this modification does not enable us to define the number of

nearest neighbors k, and thus we cannot fairly calculate ηst for merging two clusters together.

Therefore, the modified algorithm is simply to construct nn-closed sets based on the distance

constraint.

In addition to the proposed method, we also attempt to apply other clustering approaches.

As for the hierarchical clustering methods, which are single linkage and complete linkage, we

used a specified cutting criterion rather than the typical tree depth criterion, which is the

distance constraint (< 0.5), for forming clusters from the resulting cluster hierarchy. In other

words, we cut the connections, which are equal to or greater than 0.5, in dendrogram for

generating clusters. It was to make those methods as comparable to the modified CNCLUST

as possible by setting a similar criterion for forming clusters. Results will be reported in Section
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6.4.

6.3 Association Rule Mining

Association Rule Mining finds interesting associations and correlated relationships among

large sets of data items (Agrawal et al., 1993). In order to investigate what variables are related

to each etiology, we applied another data mining method, which is ARM, to the foodborne

disease dataset. Then, the generated association rules will be compared to our clustering results

in order to improve our understanding of the results from two different pattern analyses.

According to the problem of ARM defined in Agrawal et al. (1993), let I = {i1, i2, . . . , iq}

denote a set of q binary variables called ‘items’ and T = {t1, t2, . . . , tp} denote a set of trans-

actions called the database. Each transaction in T has a unique transaction ID and contains

a subset of items in I. A resulting rule is then defined as an implication of the form A ⇒ B

where A,B ⊂ I and A ∩ B = ∅. The sets of items A and B (itemsets) are called antecedent

and consequent of the rule respectively. If we consider the raw format of our dataset where

each outbreak is described as a set of words, we can notice that it is an appropriate input to

ARM. The resulting rules are expected to have a relationship between relative variables and

etiologies, e.g. ‘location is wedding reception & food is potato salad ⇒ etiology is salmonella

typhimurium’.

An association rule has three measures that express the degree of uncertainty about the

rule, and those numbers are used to select interesting rules from the set of all possible rules.

The first measure as a probability is called the support for the rule that is given in Equation

6.2, and it is simply the portion of transactions that contain all items in the antecedent and

consequent part of the rule.

Support(A⇒ B) = P (A ∩B) (6.2)

The confidence of the rule, which is the ratio of the number of transactions that include all

items in the consequent as well as the antecedent to the number of transactions that include

all items in the antecedent, can, by its definition, be interpreted as the probability of finding
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the consequent part of the rule in transactions under the condition that these transactions also

include the antecedent part. Therefore, the confidence is given by

Confidence(A⇒ B) = P (B|A) =
P (A ∩B)
P (A)

. (6.3)

The last measure, which is the lift of the rule, is the ratio of the confidence to the expected

confidence. The expected confidence means the confidence if the antecedent part does not

enhance the probability of occurrence of the consequent part. It is the number of transactions

that include the consequent part divided by the total number of transactions. Hence, the lift

value gives us information about the increase in probability of the consequent part given the

antecedent part. By such a definition of the lift, a meaningful rule should have the lift value

that is greater than one. A lift value that is greater than one means that when the consequent

part happens it is more likely that the antecedent happens (positive association), whereas a lift

value of less than 1 means that if the consequent happens it is less likely that the antecedent

happens (negative association). The lift is calculated by

Lift(A⇒ B) =
Confidence(A⇒ B)

P (B)
=

P (A ∩B)
P (A) · P (B)

. (6.4)

Association rules are required to satisfy a user-specified minimum support and a user-

specified minimum confidence at the same time. To achieve this, association rule generation

is a two-step process. First, minimum support is applied to find all frequent itemsets in a

database. In a second step, these frequent itemsets and the minimum confidence constraint

are used to form rules. While the second step is straight forward, the first step needs more

attention. In order to implement this two-step process, a-priori algorithm is the most often

used (Agrawal and Srikant, 1994).

Considering the sparseness of the dataset, we allowed enough tolerance for the support of a

rule by setting the minimum support to 3. Only the rules having the lift value that is greater

than 1 were under our consideration. Since our expectation is that the most useful rules are

of the type ‘if X and Y then Z’, where X is a location information, Y is a food vehicle that

caused the corresponding outbreak, and Z is a type of etiology, we chose three as the maximum
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number of items for generating frequent item sets. No lower limit of the confidence was decided

to prevent losing some interesting rules due to the sparseness of dataset.

Recall that association rule mining is an unsupervised learning method, that is, it will

find relationships called association rules between any attributes. Some of those relationships

will therefore not describe the etiologies of interest, so after generating all association rules, we

prune them to only include those rules that include one of the target etiologies in the consequent

(e.g. salmonella enteritidis, salmonella typhimurium, e. coli, norovirus, and scombroid toxin in

the results). Hence, we expect these patterns to provide insights into what types of outbreaks

(etiologies) are caused by specific types of food items and/or locations.

6.4 Results

An overall description of the results of clustering by our method is that we came up with

greatly many singleton clusters and several small groups having few instances. We selected the

most interpretable clusters among those, and they are shown in Table 6.3. The variables that

describe the characteristics of each corresponding cluster are also included in the table. Based

on our clustering results we could not claim any clusters that can represent either salmonella

enteritidis or salmonella typhimurium due to somehow evenly distributed instances of those

over the resulting clusters. However, it appeared that there are some clusters that mostly

consist of outbreaks of the other etiologies. Major instances in Cluster 1 are of e. coli etiology.

Three clusters, which are Cluster 2, 3, and 4, consist of the outbreaks of norovirus only. Cluster

5 and 6 has the instances of the scombroid toxin etiology except only one outbreak in those

two clusters.

Only hierarchical methods could find several meaningful clusters, whereas the others, which

are k-means, PAM, and model-based, completely failed to discover the hidden patterns of

outbreaks. The result of single linkage was exactly same with the one of the proposed method.

Similar to the proposed method, it might be undemanding for the single linkage to group

the neighbored objects by its algorithm. Complete linkage found less number of meaningful

clusters than the single linkage and the proposed. It might be due to its distance measure
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Table 6.3: Major clusters created by CNCLUST and single linkage method

Cluster Major Number of Variablesetiology instances

1 e. coli 37 Ground beef, Lettuce, Private home, Restaurant or deli

2 norovirus 35

Ice tea, Sandwich submarine, Sandwich deli,
Sandwich turkey, Salads multiple, Lettuce,
Spring rolls, Vegetables, Restaurant or deli,
Office setting, Private home, Workplace not cafeteria,
School

3 norovirus 11 Ice, Restaurant or deli, Banquet facility

4 norovirus 9 Salad, Restaurant or deli

5 Scombroid 8 Tuna, Restaurant or delitoxin

6 Scombroid 10 Fish mahi, Fish escolar, Restaurant or delitoxin

between clusters which is the largest distance between two objects in different clusters. Hence,

it grouped objects into one cluster in the case that the objects commonly share the same

features.

What we tried with PAM was to observe the average silhouette width at varying number

of clusters from 2 to 500 in order to first find a good number of clusters. However, the average

silhouette width never met a positive value, meaning that the objects were not appropriately

classified. Model-based clustering basically assumes a mixture of several Gaussian distributions

and uses the Bayesian Information Criterion (BIC) to select the best model. Due to the binary

variables of the foodborne dataset, it was impossible to find a good number of clusters by

observing the BIC. k-means clustering also faced the same difficulty when we were trying

to apply it to the given dataset. In summary, PAM, model-based, and k-means clustering

commonly need to define the number of clusters first, and then run their own algorithms to

create clusters. Since we failed to have a good cluster number, we could not obtain meaningful

cluster results. In fact, we run PAM and k-means with several cluster numbers that we guessed,

but the resulting clusters were very difficult to read and tricky to find some interesting patterns.
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Figure 6.1: Selected variables with high confidence and lift (salmonella enteritidis)

Figure 6.2: Selected variables with high confidence and lift (salmonella typhimurium)

Association Rule Mining generated several association rules linking the target etiologies

in the consequent with location and/or food variables in the antecedent. We described some

selected rules having the highest lift and confidence values in terms of bar chart in Figure 6.1

∼ Figure 6.5. We can read the rules from the figure, for example, ‘food is beef ⇒ etiology is

salmonella typhimurium’ for the last two bars of beef in Figure 6.1.

A review of Figure 6.1 reveals that the lift value of prison/jail in which salmonella enteritidis

was involved is approximately 6.5. This means that the probability that prison/jail will be

involved in salmonella enteritidis is 6.5 times higher than the general probability of prison/jail

in the dataset. Similar interpretations can be made on the other attributes, private home,

banquet facility, ground beef, and beef. More noticeable patterns of outbreaks can be seen on

two etiologies that are e. coli and scombroid toxin. The lift value of spinach is reaching to 30.0
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Figure 6.3: Selected variables with high confidence and lift (e. coli)

and the confidence of spinach is greater than 60% in Figure 6.3. It means that the rule, ‘food

is spinach⇒ etiology is e. coli ’, is highly promising. The other selected attributes overall have

very high lift values with good confidence numbers. As for the scombroid toxin etiology, all

the chosen attributes have very high lift values that are greater than 20.0 and very high values

of confidence as well. It is interesting to note that the selected attributes are related to fish

products.

We will see how the resulting clusters of outbreaks by the proposed method are consistent

with findings from the association rule mining. Representative attributes in each cluster cor-

responding to each etiology came from Table 6.3 and were then summarized again in the first

column of Table 6.4. The table also shows the selected variables from the clustering results by

single linkage and complete linkage.

Given the different nature of the clustering and ARM methods of extracting patterns,

it is worth noting when the same pattern is found by two or more methods. As can be

seen in the table, the results from the different approaches are quite consistent each other,

in the case of e. coli, norovirus, and scombroid toxin. They lead us to more lucid findings

for each type of etiology. As for the e. coli, the most commonly appeared food items are

ground beef and lettuce. Private home and Restaurant/deli were chosen as the locations of
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Figure 6.4: Selected variables with high confidence and lift (norovirus)

Figure 6.5: Selected variables with high confidence and lift (scombroid toxin)

e. coli by all three methods. It appears from the results of CNCLUST, single linkage, and

ARM that the norovirus could contaminate many different food items in various places. The

most frequently chosen food items are ice, lettuce, a series of sandwiches, and a category of

salads. Since restaurant/deli appears frequently across the most of etiologies, except this,

workspace-not-cafeteria and banquet facility seem the places of norovirus. It is clearly shown

that the scombroid toxin is directly related to some marine products. In an outbreak of tuna

consumption in restaurants, the disease can be attributed to the scombroid toxin etiology by

all three clustering methods and ARM.
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6.5 Chapter Summary

In this chapter, we applied the proposed clustering method to a real example which is about

foodborne disease outbreaks. The purpose of the analysis of this foodborne disease dataset was

to find interesting patterns that connect specific types of foodborne diseases outbreaks (etiolo-

gies) with associated foods and consumption locations. Due to the data sparseness, clustering

the given dataset was a tough problem to any of clustering methods that we employed, and we

thus made a modification to our algorithm in order to overcome the difficulty. The modified

CNCLUST and single linkage method provided the best possible clustering solution in our

analysis, and the result was quite consistent with the result of another data mining technique,

which is Association Rule Mining. We believe that the knowledge found in this research will

be useful to gain insight into the types of foods, food combinations and consumption locations

that are more frequently linked to certain types of foodborne disease outbreaks.
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Table 6.4: Selected variables for each etiology by four different methods

Etiology CNCLUST & Complete linkage Association Rule MiningSingle linkage

salmonella N/A N/A Ground beef
enteritidis Beef

Prison/jail
Private home
Banquet facility

salmonella N/A N/A Chicken
typhimurium Private home

Restaurant or deli

e. coli Ground beef Private home Spinach
Lettuce Restaurant or deli Ground beef
Private home Milk
Restaurant or deli Lettuce

Restaurant or deli
Private home

norovirus Ice Ice Lettuce
Ice tea Salad Salad
Sandwich submarine Lettuce Green salad
Sandwich deli Restaurant or deli Sandwich turkey
Sandwich turkey Private home Ice
Salad Banquet facility Sandwich submarine
Salads multiple Potato salad
Lettuce Mixed fruit
Spring rolls Banquet facility
Vegetables Office setting
Restaurant or deli School
Banquet facility Nursing home
Office setting Wedding reception
Private home Church or temple
Workplace not cafeteria Workplace not cafeteria
School Restaurant or deli

scombroid Fish mahi Tuna Fish mahi
toxin Tuna Restaurant or deli Tuna

Fish escolar Fish escolar
Restaurant or deli Restaurant or deli
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CHAPTER 7. CONCLUSIONS

Since clustering is in part in the eye of beholder, we may not be able to assert a clearly

agreed definition of cluster. Cluster has been considered as something that researchers believe

as cluster. Despite of the ambiguity on its definition, people have agreed upon one principle

that a good clustering should be compact, and they have been using the within-cluster sum

of squares as its measurement that is called compactness in this research. What we would

like to point out at this juncture is that most of works in clustering starts from measuring the

quality of cluster. Hence, people first define what a good clustering is, and later work with it

for solving other issues such as how to cluster objects and how to define the desirable number

of clusters. It means that a goodness measurement of clustering should be indentified prior to

developing any new clustering methods and/or any new approaches for estimating the number

of clusters in data.

Apart from the compactness measure, perhaps there are several other criteria that we may

want to achieve in data clustering. In this research we introduced the connectivity built on

two preferred properties for a good clustering, which are called the cluster k-NN consistency

and cluster k-MN consistency, and, with these measurements, also proposed new approaches

for both estimating the number of clusters and clustering objects.

Both of the compactness and the connectivity are used in estimating the number of clus-

ters. By measuring and evaluating these at different number of clusters, the proposed method

suggests a set of promising candidates of cluster numbers and finally decides a single number

by choosing a governing one. Since the two metrics are measured on several datasets generated

from the original one with a little distortion, the final cluster number could be more reliable

than a single estimate. We performed an intensive simulation study to evaluate the proposed
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estimating method, and it has appeared that our approach nearly estimated correct cluster

numbers not only for convex-shaped clusters but also for non-convex-shaped ones. Since none

of previous studies in the research of identification of the number of clusters have considered

a dataset that has the objects distributed non-spherically, we believe that this positive exper-

imental result can lead us to a more worthwhile estimating methodologies based on and with

the proposed scheme.

We were also able to see the potentialities that the connectivity could contribute on cre-

ating a new clustering algorithm. In developing a new clustering algorithm, what we were

concerned about is that the resulting cluster solution should preserve the nearest neighbor

consistencies of objects, that is, minimize the amount of connectivity defined in Chapter 3 as

much as the algorithm can. With this clustering objective, the algorithm first considers a local

compactness by forming nearest-neighbor-closed sets and later recognizes a global structure of

cluster connectivity by grouping the sub-clusters. Both of the two steps attempt to minimize

the connectivity, which is determined when the number of nearest neighbors is given, as much

in earlier stages as possible. Based on 11 two-dimensional datasets, we investigated how the

proposed method, named as CNCLUST, clusters objects. Similar to traditional single linkage

method, CNCLUST was able to detect clusters of any arbitrary shapes; moreover it showed

more robustness to outliers than the single linkage and the complete linkage because it consid-

ers not a single nearest neighbor object but the structure of nearest neighbors of objects. It

has been observed that CNCLUST in general performed well over the range of 11 simulated

datasets, while some existing methods failed to figure out true clusters in some cases. We

also applied the proposed clustering algorithm with a little modification to a real example.

In spited of very special structure of the given dataset, we found several interesting clusters

that might be helpful to the application area. In addition, the clustering results were quite

consistent with those from applying another data mining technique to the same dataset.

As mentioned at the end of Chapter 4 and 5, we end up with suggesting several future

works for making this research wealthier. In spite of showing several benefits of the proposed

estimating method and CNCLUST from numerical experiments, it will be required to present
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how they work on some real benchmark datasets in clustering literature, for example, datasets

in UCI repository (Asuncion and Newman, 2007). That may help readers/users who are

interested in our methods to understand the methods. Second, both of the proposed methods

are a sort of ad hoc approaches that do not have a theoretical foundation on each, although

they are built on reasonable rationales. It must be valuable to clearly figure out analytical

interpretations on the proposed methods, so we can guarantee their good performance, at

least, on some particularly assumed structures of clusters. Lastly, with respect to the issue on

computational efforts, a modification of algorithm or strategic suggestions may be required in

order to cope with a large scale of clustering problems.
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APPENDIX A. 50 SIMULATIONS ON DATA 10

We generated 20 synthetic datasets by Populate() function in this simulation model and

counted how many times each number of clusters was chosen by the compactness (CP) and

the connectivity (CN ). The finally chosen number of clusters in each simulation was shown at

the last column of the table.

Simulation Number of clusters g∗ by Final
1 2 3 4 5 6 7 8 9 10 CP, CN g∗

1 CP 0 0 20 0 0 0 0 0 0 0 3 3CN 0 0 0 1 1 0 1 3 14 0 9

2 CP 0 0 5 0 0 0 0 0 15 0 9 9CN 5 0 0 0 0 0 0 9 6 0 8

3 CP 0 0 19 0 0 0 0 0 1 0 3 3CN 4 0 0 0 0 0 0 2 14 0 9

4 CP 0 0 0 0 0 0 0 0 20 0 9 9CN 2 0 0 0 0 0 0 0 18 0 9

5 CP 0 0 11 0 0 0 0 0 9 0 3 9CN 1 0 0 1 0 0 1 10 7 0 8

6 CP 0 0 7 0 0 0 0 0 13 0 9 9CN 2 0 1 0 0 0 0 2 15 0 9

7 CP 0 0 0 0 0 0 0 0 20 0 9 9CN 2 0 0 0 0 0 0 0 18 0 9

8 CP 0 0 20 0 0 0 0 0 0 0 3 3CN 3 0 0 0 0 0 0 0 17 0 9

9 CP 0 0 7 0 0 0 0 0 13 0 9 9CN 5 0 0 4 0 0 2 2 7 0 9

10 CP 0 0 18 0 0 0 0 0 2 0 3 9CN 3 0 0 0 0 0 0 0 17 0 9

11 CP 0 0 19 0 0 0 0 0 1 0 3 3CN 2 0 0 0 0 0 0 0 18 0 9

12 CP 0 0 20 0 0 0 0 0 0 0 3 3CN 7 0 0 0 2 0 0 0 11 0 9

13 CP 0 0 18 0 0 0 0 0 2 0 3 3CN 4 0 0 3 0 0 7 0 6 0 7

14 CP 0 0 18 0 0 0 0 0 2 0 3 3CN 3 0 0 0 0 0 2 0 15 0 9
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Simulation Number of clusters g∗ by Final
1 2 3 4 5 6 7 8 9 10 CP, CN g∗

15 CP 0 0 8 0 0 0 0 0 12 0 9 9CN 2 0 0 0 0 0 0 9 9 0 8,9

16 CP 0 0 13 0 0 0 0 0 7 0 3 9CN 4 0 0 0 2 0 0 0 14 0 9

17 CP 0 0 17 0 0 0 0 0 3 0 3 3CN 7 0 0 0 1 0 0 0 12 0 9

18 CP 0 0 15 0 0 0 0 0 5 0 3 9CN 2 0 0 0 2 0 0 0 16 0 9

19 CP 0 0 11 0 0 0 0 0 9 0 3 9CN 1 0 0 0 0 0 0 0 19 0 9

20 CP 0 0 15 0 0 0 0 0 5 0 3 9CN 3 0 0 0 4 0 0 2 11 0 9

21 CP 0 0 16 0 0 0 0 0 4 0 3 9CN 3 0 0 0 2 0 0 0 15 0 9

22 CP 0 0 13 0 0 0 0 0 7 0 3 9CN 1 0 0 1 0 0 3 7 8 0 9

23 CP 0 0 1 0 0 0 0 0 19 0 9 9CN 4 0 2 0 0 0 0 0 14 0 9

24 CP 0 0 6 0 0 0 0 0 14 0 9 9CN 2 0 0 0 0 0 1 0 17 0 9

25 CP 0 0 15 0 0 0 0 0 5 0 3 9CN 3 0 0 0 0 0 0 1 16 0 9

26 CP 0 0 18 0 0 0 0 0 2 0 3 3CN 3 0 0 0 1 0 0 1 15 0 9

27 CP 0 0 12 0 0 0 0 0 8 0 3 9CN 2 0 6 1 0 0 0 0 11 0 9

28 CP 0 0 9 0 0 0 0 0 11 0 9 9CN 5 0 0 0 0 0 0 0 15 0 9

29 CP 0 0 17 0 0 0 0 0 3 0 3 9CN 2 0 0 0 0 0 0 0 18 0 9

30 CP 0 0 20 0 0 0 0 0 0 0 3 3CN 6 0 1 0 0 0 0 0 13 0 9

31 CP 0 0 16 0 0 0 0 0 4 0 3 3CN 2 0 0 1 1 0 3 1 12 0 9

32 CP 0 0 17 0 0 0 0 0 3 0 3 9CN 4 0 0 0 0 0 0 0 16 0 9

33 CP 0 0 17 0 0 0 0 0 3 0 3 3CN 2 0 4 0 0 0 0 5 9 0 9

34 CP 0 0 15 0 0 0 0 0 5 0 3 9CN 3 0 0 0 0 0 0 0 17 0 9

35 CP 0 0 6 0 0 0 0 0 14 0 9 9CN 4 0 0 0 0 0 0 0 16 0 9

36 CP 0 0 18 0 0 0 0 0 2 0 3 3CN 2 0 0 0 2 0 0 8 8 0 8,9

37 CP 0 0 17 0 0 0 0 0 3 0 3 3CN 5 0 0 0 2 0 0 0 13 0 9

38 CP 0 0 15 0 0 0 0 0 5 0 3 3CN 1 0 0 0 0 0 0 9 10 0 9
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Simulation Number of clusters g∗ by Final
1 2 3 4 5 6 7 8 9 10 CP, CN g∗

39 CP 0 0 17 0 0 0 0 0 3 0 3 9CN 2 0 0 0 0 0 0 0 18 0 9

40 CP 0 0 12 0 0 0 0 0 8 0 3 9CN 2 0 0 0 0 1 0 0 17 0 9

41 CP 0 0 20 0 0 0 0 0 0 0 3 3CN 2 0 0 0 0 1 1 2 14 0 9

42 CP 0 0 19 0 0 0 0 0 1 0 3 3CN 3 0 0 0 1 0 0 0 16 0 9

43 CP 0 0 2 0 0 0 0 0 18 0 9 9CN 1 0 0 0 0 0 0 1 18 0 9

44 CP 0 0 12 0 0 0 0 0 8 0 3 9CN 1 0 0 0 0 1 4 3 11 0 9

45 CP 0 0 5 0 0 0 0 0 15 0 9 9CN 3 0 0 0 0 0 0 0 17 0 9

46 CP 0 0 5 0 0 0 0 0 15 0 9 9CN 3 0 1 0 2 0 0 0 14 0 9

47 CP 0 0 19 0 0 0 0 0 1 0 3 3CN 3 0 0 0 0 0 0 9 8 0 8

48 CP 0 0 17 0 0 0 0 0 3 0 3 9CN 1 0 0 0 0 0 4 2 13 0 9

49 CP 0 0 14 0 0 0 0 0 6 0 3 9CN 1 0 0 0 2 0 0 0 17 0 9

50 CP 0 0 19 0 0 0 0 0 1 0 3 3CN 2 0 0 1 0 1 0 7 9 0 9



www.manaraa.com

112

APPENDIX B. VARIABLES IN FOODBORNE DISEASE DATA

Binary Variables

No. Name Ones Zeros No. Name Ones Zeros
1 private home 197 970 54 French fries 2 1165
2 beef 11 1156 55 fruit 3 1164
3 black grouper 2 1165 56 fruit salad 4 1163
4 Caesar salad 3 1164 57 green salad 12 1155
5 cheese 4 1163 58 guacamole 2 1165
6 chicken 25 1142 59 ice 5 1162
7 clams 5 1162 60 ice tea 3 1164
8 coffee 1 1166 61 milkshake 5 1162
9 crab 4 1163 62 multiple salads 2 1165
10 deli meat 2 1165 63 ranch dressing 2 1165
11 fish escolar 7 1160 64 ribs pork 2 1165
12 fish mahi 9 1158 65 salsa 3 1164
13 fish roi 2 1165 66 sandwich club 2 1165
14 fried rice 3 1164 67 sandwich turkey 7 1160
15 ground beef 13 1154 68 seafood 2 1165
16 ham 3 1164 69 seafood pasta 3 1164
17 lettuce 27 1140 70 spring rolls 2 1165
18 macaroni cheese 2 1165 71 steak 2 1165
19 milk 9 1158 72 steak prime rib 2 1165
20 mixed fruit 6 1161 73 sushi 2 1165
21 mushrooms 4 1163 74 tuna 9 1158
22 peanut butter 2 1165 75 tuna salad 2 1165
23 pizza cheese 2 1165 76 vegetables 4 1163
24 pizza meat vegetable 2 1165 77 watermelon 4 1163
25 pork 17 1150 78 cake cheese 2 1165
26 potato salad 10 1157 79 chicken buffalo wings 2 1165
27 refried beans 3 1164 80 Picnic 16 1151
28 rice 5 1162 81 sausage 2 1165
29 salad 24 1143 82 workplace not cafeteria 39 1128
30 sandwich beef 3 1164 83 banquet facility 94 1073
31 sandwich chicken 4 1163 84 meatballs 2 1165
32 sandwich deli 8 1159 85 pasta salad 3 1164
33 sandwich submarine 6 1161 86 roast beef 2 1165
34 shrimp 8 1159 87 prison jail 6 1161
35 sphyraena barracuda 4 1163 88 turkey gravy 2 1165
36 spinach 3 1164 89 office setting 52 1115
37 tea 2 1165 90 chicken salad 3 1164
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No. Name Ones Zeros No. Name Ones Zeros
38 turkey 8 1159 91 workplace cafeteria 6 1161
39 bread 2 1165 92 School 37 1130
40 oysters 11 1156 93 beef meatball 2 1165
41 tomatoes 3 1164 94 sloppy Joe 2 1165
42 restaurant or deli 573 594 95 tortilla 2 1165
43 buffet 2 1165 96 temporary mobile 7 1160
44 chicken buffalo 2 1165 97 cafeteria 2 1165
45 chicken nuggets 2 1165 98 church temple 21 1146
46 chicken teriyaki 3 1164 99 hospital 9 1158
47 chips tortilla 2 1165 100 grocery store 5 1162
48 coleslaw 2 1165 101 nursing home 18 1149
49 crab salad 2 1165 102 camp 8 1159
50 egg rolls 3 1164 103 wedding reception 15 1152
51 ethnic style buffet 2 1165 104 prison jail 7 1160
52 fish 3 1164 105 day care center 3 1164
53 fish ahi 3 1164 106 workplace not cafeteria 8 1159
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Confirmed Etiology Variable

Value Number of instances
Bacillus cereus 13
Brucella spp 0
Campylobacter fetus 0
Campylobacter jejuni 14
Campylobacter unknown 10
Clostridium botulinum 4
Clostridium perfringens 34
E. coli., Enterohemorrhagic O121 0
E. coli., Enterohemorrhagic O157:H7 27
E. coli., Enterohemorrhagic O26 0
Listeria monocytogenes 2
Listeria unknown 0
Salmonella 2
Salmonella Agona 0
Salmonella Anatum 0
Salmonella Baildon 0
Salmonella Bareilly 2
Salmonella Berta 3
Salmonella Braenderup 0
Salmonella Enteritidis 28
Salmonella Group B 2
Salmonella Hadar 0
Salmonella Heidelberg 9
SalmonellaI 4,[5],12:i:- 4
Salmonella Java 2
Salmonella Javiana 4
Salmonella Miami 0
Salmonella Montevideo 3
Salmonella Muenster 1
Salmonella Newport 9
Salmonella Oranienburg 4
Salmonella Paratyphi B 0
Salmonella Potsdam 0
Salmonella Saintpaul 2
Salmonella Schwarzengrund 0
Salmonella Stanley 1
Salmonella Tallahassee 1
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Value Number of instances
Salmonella Tennessee 3
Salmonella Thompson 2
Salmonella Typhimurium 22
Salmonella Typhimurium var Copenhagen 3
Salmonella Uganda 1
Salmonella Weltevreden 1
Shigella flexneri 1
Shigella sonnei 8
Staphylococcus aureus 24
Vibrio parahaemolyticus 10
Bacillus other 0
E. coli., Enterotoxigenic Unspecified 0
Other bacterial 16
Salmonella Agona 2
Salmonella unknown 0
Staphylococcus unknown 5
Hepatitis A 3
Norovirus 457
Other viral 1
Ciguatoxin 10
Histamine 2
Monosodium glutamate (MSG) 0
Mushroom toxins 4
Neurotoxic Shellfish Poison 2
Other chemical 0
Plant toxins(Herbal toxins) 0
Scombroid toxin 30
Cleaning Agents 2
Puffer fish tetrodotoxin 1
Cryptosporidium parvum 4
Cyclospora cayatenensis 3
Giardia lamblia 2
Other parasitic 0
Trichinella spiralis 0
Bacillus cereus; Clostridium perfringens 17
Bacillus cereus; Staphylococcus aureus 1
Salmonella Enteritidis; Campylobacter jejuni 0
Salmonella Heidelberg; Salmonella Agona 0
Salmonella Newport; Salmonella Meleagridis 0
Salmonella unknown; E. coli., Enterohemorrhagic Unspecified 0
Unknown 349
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